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The surface energy and its anisotropy of 13 hexagonal close-packed (HCP) metals have been investigated via a
broken-bond based geometricmodel. Themodel can assess arbitrary orientationswhich are difficult to construct
in atomistic simulations. Using only three material dependent parameters, our results are in good agreement
with themajority of reported experimental values. An exception occurs in the cases of divalent spmetals, namely
Mg, Zn and Cd, for which the calculated values are lower by a factor of 2. For all 13 metals, the stereographic
projections of surface energy demonstrate strong six-fold symmetries with a global minimum on (0001) pole,
whereas the actual projection patterns are unique for every element. The overall anisotropy is found to be 15%
to 21%. The equilibrium crystal shape of HCP metals is found to be a truncated hexagonal bi-prism, with the
(0001) facets always shown, but the bi-prismatic facets vary from one metal to another. The detailed anisotropy
of surface energy is found to be largely determined by an anharmonicity factor η. The results of metals possessing
comparatively low η, namely Be, Sc, Ti, Y, Zr and Hf, are in better agreement with experimental findings. We
believe the surface energy anisotropy of these elements is more representative for HCP metals.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Surface energy is one of the most important fundamental quantities
in the context of surface science. It has a significant impact on the
structure and properties of a material [1–3], and controls how it reacts
to its surroundings [4,5]. In contrast to its counterpart of non-
crystalline phases, the surface energy of crystalline substances exhibits
orientation-dependent behaviour [6,7], which is originated from the
long-range structural order. The surface energy anisotropy of a crystal-
line substance is dependent on its lattice structure as well as the physi-
cal and chemical environments underwhich the surface is presented. As
such, an improved understanding of the surface energy and its anisotro-
py helpswith themanipulation of not only surface properties such as its
energy absorption and catalytic capacity, but also bulk properties
including toughness and fatigue resistance.

Direct measurement of the surface energy remains challenging. By
far the best experimental approach relies on analysis of carefully equil-
ibrated crystallites [8–10]. Such process is reliable for some materials
but not the others, and has low reproducibility. Alternatively, a large
part ofmodern understanding on the topic of surface energy is obtained
via computational methods, such as density-function theories (DFT),
embedded-atommethods (EAM) and other semi-empirical approaches
[11–24]. Substantial computational resource is required to calculate the
full anisotropy of surface energy for atomically complex surfaces.

Being regarded as brittle materials thus overlooked in the past,
hexagonal close-packed (HCP) metals attract a recent resurgence of in-
terests, owing to some of the unique properties they possess. Nonethe-
less, compare to cubic metals, the knowledge regarding HCP metals in
the context of surface energy, particularly its anisotropy, is somewhat
limited. Following our recent work on face-centred cubic (FCC) metals
[25], an improvedMackenzie's broken-bondmodel has been developed
for HCP metals. Combiningwith the Rose–Vinet universal potential, the
new model is used to study the absolute unrelaxed surface energy and
its orientation-dependence of 13 HCP metals. Only three input parame-
ters, namely the lattice constant, the bulk modulus and the cohesive
energy, are employed in the model. The method allows construction
of three-dimensional γ-plots which lead to some new interesting
understandings of the subject. The naturally favoured facets of HCP
metals are revisited base on these findings.

The remainder of this paper is organized as follows. Section 2 intro-
duces the theoretical parts of our model. Results and discussions are
presented in Section 3. Section 4 concludes our work.

2. Theory

According to Herring [26], the excessive energy of surface with
orientation n̂ can be expressed as

Γ n̂ð Þ ¼ 1
2
∑ f b bð Þϕb ð1Þ

where ϕb denotes the energetic contribution from a two-body type
interaction between atoms linked by vector b, and fb is the amount of
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b type bonds broken upon the creation of a pair of such surface. It is
generally questionable whether such two-body formalism is physically
representative for metallic systems. However, in our latest work on FCC
metals [25], we demonstrated how the many-body contribution in an
EAM type potential can be renormalised into an expansion of pair-
wise interactions by exploiting a large coordination shell. Following
the same treatment, Eq. (1) can be rewritten as

Γ n̂ð Þ ¼ 1
2

X
i

f bi bi
� �

ϕbi ð2Þ

where bi represents a set of crystallographically equivalent vectors. The
strength of ϕbi terms are estimated via the Rose–Vinet universal
potential [27], which takes the following form

E rð Þ ¼ −Ec 1þ a� þ 0:05a�3
� �

e−a� ð3Þ

a� ¼ η
r
re
−1

� �
ð4Þ

η ¼
ffiffiffiffiffiffiffiffiffiffi
9ΩB
Ec

s
ð5Þ

where Ec is the atomic cohesive energy, Ω represents the atomic
volume, B denotes the bulk modulus and re refers to the equilibrium
nearest neighbour (1st NN) distance. The width of this potential well
is inversely proportional to the dimensionless anharmonicity term η.
The strength of ϕbi terms in Eq. (2) is related to the strength ratio
between the ith NN and 1st NN interactions, ϕ

bi

ϕ
b1
, which can be approxi-

mated given the interatomic distance ratio between the ith NN and

1st NN interactions, bij j
b1j j, and η, as follows

ϕbi

ϕb1
¼ 1þ η
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For cubic structures, the neighbouring order of a particular set of bi is
indifferent from one crystal to another. For HCP structures, on the other
hand, the ordering of neighbour is dependent on the actual c/a ratio
which varies from one lattice to another, as the hexagonal metals are
not exactly “close-packed”. In addition, the symmetries presented in
HCP lattice are more complicated as compared with cubic systems. In
this paper, the 7 nearest bi sets are considered in our calculation of
surface energy regardless of their neighbouring order. The significant
bi sets are labelled alphabetically, rather than numerically as in our
previouswork. An example of each bi set vector is given in Fig. 1. The co-
ordination numbers and bond length (as a function of a and c) of the bi

vectors are listed in Table 1. The 0 K zero pressure value of the three
input parameters, anharmonicity factor η, 1st NN bond strength ϕb1

and the relative bond strengths (as compared to ϕb1 ) of bi vectors for
13 elemental HCP metals are given in Table 2.

In a broken-bond method, the excessive energy of a surface with
outward normal n̂ is calculated from the strength and number of
destroyed bond vectors b upon the creation of the surface. For a specific
b vector to be broken thus it contributes to the calculated surface ener-
gy, the following two conditionsmust be fulfilled: 1) the projection of b
on n̂must be in the same orientation as n̂, which gives n̂ � bN0;and 2) the
parent atom of b vector must reside within the projection of the bond
length on n̂ to be considered as a “surface atom”. As such, if atomic

volume is denoted as Ω, the areal broken-bond density, f b , can be
expressed in the following piece-wise manner

f bi ¼ 1
Ω

X
i

n̂ � bi for n̂ � b N 0

¼ 0 for n̂ � b ≤ 0
: ð7Þ

Eq. (7) can be used for cubic systems without further modification.
However, the concept of bonding geometry needs to be considered
before applying Eq. (7) for hexagonal metals. Unlike the atoms in
cubic crystals, which have a share of a fixed set of significant b
vectors, the atoms in HCP crystals have two different sets of significant
b vectors. In other words, an HCP atom has one of the two bonding ge-
ometries associated with its lattice structure. An example on the bB

vectors is given in Fig. 2. It can be seen that the layer A atoms share a
set of six bB vectors coloured in blue, whereas all layer B atoms share
the other set of six bB vectors coloured in red. This discrepancy occurs
when bB vectors climb into alternative atomic layers, leading to two
distinctive bonding geometries possessed by layer A atoms and layer B
atoms respectively. This difference in bonding geometry affects the
bond sets bB, bC and bE. Consider the fact that layers type A and type B
where each contains half of the total atoms in the lattice, the two
bonding geometries will have equal chances to occur for a specific
surface atom.

Fig. 1.AHCP cell showing the nature of bi vectors. The vectors are labelled as referred to in
Tables 1 and 2.

Table 1
The nature, the corresponding coordination number Zbi and the length of significant bi

vectors presented in HCP lattice.

Nature of bond vector Coordination number Zbi |bi|

bA
1120

n o
6 a

bB
2203

n o
6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=3a2 þ 1=4c2

p
bC

4403
n o

6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4=3a2 þ 1=4c2

p
bD {0001} 2 c
bE

1231
n o

12
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7=3a2 þ 1=4c2

p
bF

1100
n o

6
ffiffiffi
3

p
a

bG
1121

n o
12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ c2

p
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