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The paper introduces a new three-dimensional heteroepitaxial kinetic Monte Carlo (KMC) model for fast simu-
lation of self-assembled quantum dot (QD) arrays. It represents a computationally efficient simplification of
the ball-and-spring model and captures the most important features of heteroepitaxial growth. This conclusion
is supported by our results obtained from KMC simulations of InAs QDs grown on GaAs(001) substrate at the
following technologically relevant conditions: temperature in the range T = 700–800 K, deposition rate
F = 0.1–1.6 ML/s, and a set of energy barriers derived from the literature. The main characteristics of QDs such
as uniformity in size, aspect ratio, spatial ordering and others, are studied as functions of the most important
parameters describing the growth process — substrate temperature, deposition rate and surface coverage.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Due to the unique physical properties, semiconductor quantum dots
(QDs) are important for applications in various advanced optoelectronic
and single-electron devices— lasers, detectors, andmany others (see [1]
and references therein). Usually such practical applications require fab-
rication of QD arrays, consisting of millions of densely packed, equisized
and uniformly distributed QDs [2]. Along with the techniques based on
prepatterned substrates [3] one of themost promisingmethods for fab-
rication of QD arrays is the self-assembly (or self-organization) [4–7]
which often gives even better results as regards the size and spatial dis-
tribution of the dots. By this method, the desired three-dimensional
(3D) structures grow as a result of deposition of a certain semiconduct-
ing material on a substrate made of another material with the same
crystalline structure but with lattice constant(s) differing significantly
from the lattice constant(s) of the deposited compound. Formost appli-
cations of QDs it is crucial to be achieved as equally shaped as possible
dots, with high density, uniform spatial ordering and narrow size distri-
bution. Themain parameterswhich control these quantities are the sub-
strate temperature T, the deposition rate F and the surface coverage θ.

Kinetic Monte Carlo (KMC) models (see e.g. [8–11]), molecular dy-
namics [12], and continuum models [13,14] have been used to un-
derstand the complicated process of QD self-assembly. Growth of
GexSI1 − x/Si(001) and InxGa1 − x/Ga(001) nanostructures are the
most widely studied prototypes. A 2D multiscale lattice model incorpo-
rating effective surface reconstructions is used in [8] for investigation of
the pyramid-to-dome transition in the heteroepitaxial growth of
GexSI1 − x on Si. With this model, both shallow and steep facets are
simulated and the results are explained by a theory based on simple

forms of facet and elastic energies. Applying advanced algorithm for
the solution of the elastic problem, the 3D KMC simulations presented
in [9] study the deposition of InAs on patterned GaAs(001) surfaces. In
a recent work [10], the same model is used to describe important
features of heteroepitaxial growth including intermixing, wetting
layer, critical thickness, and apparent critical thickness. Other aspects
of heteroepitaxial KMC modelling concern the influence of different
growth parameters such us temperature, deposition rate, interruption
time (the time given to the system to equilibrate after the deposition
is terminated) [15], and substrate anisotropy [16] on QD characteristics.

The KMCmodel for the simulation of strain-inducedQD formation at
the same computational cost as for homoepitaxial growth. It is utilized
by using solely two parameters: elastic correction ΔW1 and the wetting
barrier ΔEγ which are described below. Nevertheless, as shown by
investigations of self-assembly characteristics, the model can simulate
to sufficient extent the self-assembly of QDs. This means that our inves-
tigation is not only devoted to the effect of strain on the 2D island mor-
phology in the submonolayer growth but also to the entire 3Dprocess of
self-assembly even in long running processes. Including other parame-
ters corresponding to more complex systems most probably will suc-
cessfully model more diverse heteroepitaxial objects. Although the
histograms of island sizes have been commonly accepted in previous
similar studies we use different diagrams for almost all quantities of
the system during the time evolution and the population of QDs at
given surface coverage accompaniedwith appropriate relative standard
deviations. Ourmodel is described in detail in Section 2. In Section 3, it is
supported by the results from our simulations of the system InAs/
GaAs(001). We do not include interruption time in the simulations
and concentrate mainly on the influence of the growth parameters on
the surface patterns obtained from abruptly terminated growth. The
first reason for our assumptions is that these patterns serve as
prepatterns for further system equilibration in the period of growth
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interruption. On the other hand, reaching an equilibrium state in exper-
imental conditionsmay take a long time, which is often far from the ca-
pabilities of the KMC method [17]. Conditions of abruptly terminated
growth are met, for instance, if capping or cooling down of the system
is applied so that the nonequilibrium state is frozen [18]. The growth
conditions (temperature, deposition rate and coverage) used in our
study correspond mainly to the kinetically driven regime of growth at
small overcritical coverages which is of crucial importance for the
total self-assembly process.

2. Description of the model

Our model is based on the solid-on-solid KMC model — individual
atoms adsorb at a certain deposition rate F and occupy fixed sites in a
simple cubic lattice of lateral size N lattice units (l.u.) with no overhangs.
They are allowed to move discretely from the current site to one of its
nearest neighbours. The rate F is defined as the number of atoms per
time unit and per site, which arrive at their adsorption sites. Periodic
boundary conditions are applied with respect to neighbours for energy
barrier calculations and neighbours formoving. The important events in-
cluded in the model are deposition and diffusion, while desorption is
considered as negligible at the growth conditions used in the simulations
[19]. The hopping rate of a surface atom is given by the Arrhenius law

R ¼ νexp −ΔE= kBTð Þð Þ; ð1Þ

(νbeing the attempt frequency,ΔE—hopping barrier, T— substrate tem-
perature and kB — Boltzmann's constant) [20]. The hopping barrier ΔE
has several ingredients:

ΔE ¼ jnEn þ jnnEnn þ ΔEγ−ΔW; ð2Þ

where the short-ranged interactions are based on the bond counting
approach, that is, En and Enn are the contributions from (in-plane and
out-of-plane) nearest, resp. next-nearest neighbours and jn, jnn are the
corresponding numbers of neighbours. The long-ranged elastic interac-
tions due to strain are incorporated by using a simple modification of
the ball-and-spring model which is explained below and is represented
in the formula for the total energy barrier by the elastic correction ΔW.
This elastic correction is applied when the atom is hopping up a step of
height 1 monolayer (ML). According to the model assumptions, it de-
pends only on the distance k (in l.u.) of the atom to the substrate and
thus, will be further denoted by ΔWk. The wetting barrier ΔEγ is an addi-
tional barrier for hopping down which originates from the wetting
effects and is determined by the difference between the surface free
energies of the deposited material and the substrate. In the present
study, we assume that ΔEγ does not depend on the layer height, that
is, the wetting layer is not taken into account (see Section 3.3).

The probability of a given configuration of the system at equilibrium
is proportional to the time spent from the system in the configuration.
This time is inversely proportional to the total rate Rtot for living this
configuration:

Rtot ¼ Rads þ R↑ þ R↓ þ R⇄
; ð3Þ

where Rads = N2F is the total adsorption rate and

R↑ ¼ ν
X∞
k¼1

N↑
kexp

− j↑nEn− j↑nnEnn þ ΔWk

kBT

 !
; ð4Þ

R↓ ¼ νN↓exp
− j↓nEn− j↓nnEnn−ΔEγ

kBT

 !
; ð5Þ

R⇄ ¼ νN⇄exp
− j⇄n En− j⇄nnEnn

kBT

 !
ð6Þ

are the total rates for moving up, down and within the same layer, re-
spectively. Here, Nk

↑ is the number of possible hops of an atom from
layer of height k to layer of height k + 1 in the current state of the
system; N↑ = ∑ k Nk

↑, N↓ and N⇄ are the total numbers of possible hops

up, down and within the same layer, respectively; j↑n ( j↑nn), j
↓
n ( j↓nn) and

j⇄n ( j⇄nn) are the average numbers of nearest (next-nearest) neighbours
per a possible hop (average coordination numbers) in the corresponding
directions.

The system evolves in time attempting to keep the value of Rtot as
small as possible. If the elastic corrections {ΔWk} are raised, it will try
to reduce N↑, more hoppings up will be executed, and therefore, N↓

will be increased. The system will tend to grow in a 3D manner. The
same effect is observed, if ΔEγ is raised to a high enough value. And
vice versa, if ΔEγ is low enough, the systemwill not be able to compen-
sate the excess of free energy by increasing N↓, more hoppings down
will be performed, N↑ will be increased, and the value of Rtot will be

lowered on account of the higher coordination numbers j
↑
n and j

↑
nn. In

particular, the conditions of ΔEγ = 0 (the case of full wetting) and
small enough {ΔWk} will favour the layer-by-layer growth mode.

The elastic corrections {ΔWk} are calculated in the following way. Let
αs and αf denote the bulk lattice parameters of the substrate and the de-
posited material, respectively. First, we obtain the vertical lattice spacing
αz of the film due to strain transformation of the lattice. It is supposed
that every atom is connected with imaginary Hookean springs with its
(up to 4) nearest lateral neighbours in the (x,y)-plane, (up to 2) nearest
neighbours in the z-direction and (up to 12) next-nearest neighbours.
Let k1 and k2 be the spring constants for lateral bonds and for diagonal
bonds, correspondingly (we assume that the spring constants are the
same for substrate and for film atoms). Now, consider the elastic energy
stored in the springs connecting a given atom with its neighbours. The
contribution of every lateral, resp. diagonal, neighbour in (x,y)-plane is

equal to 1/2k1(af − as)2, resp. 1=2k2
ffiffiffi
2

p
af−

ffiffiffi
2

p
as

� �2
, for nearest

neighbours in the z-direction 1/2k1(af − az)2, and for out-of-plane next-

nearest neighbours 1=2k2
ffiffiffi
2

p
af−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2s þ a2z

q� �2

. Further, we require

having a mechanical equilibrium in a system consisting of a substrate
and complete monolayers of deposited atoms. It is easily seen that
(neglecting the local atom displacements) the total elastic energy of
such a system is a sum of a term which does not depend on αz and a
multiple of the quantity

Ez ¼
1
2
k1 af−az
� �2 þ 2k2

ffiffiffi
2

p
af−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2s þ a2z

q� �2
: ð7Þ

Thus, the equilibrium state corresponds to the minimum of Ez with
respect to the parameter αz. Note that af = (1 + ε)as, where ε is the
lattice mismatch between the film and the substrate. Clearly, the mini-
mum point of Ez depends only on the ratio k1/k2 but not on the absolute
values of k1 and k2. Let us choose k1 = 2k2 which is in agreement with
the elastic properties of one the most studied heteroepitaxial systems
InAs/GaAs [9]. Then the value of az = δas which minimizes Ez is deter-
mined by the unique positive solution δ of the equation

3δ−1−εð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ δ2

p
¼ 2

ffiffiffi
2

p
1þ εð Þδ: ð8Þ

Taking for example the system InAs/GaAs(001) with ε = 0.07, we
get δ ≈ 1.1045, that is, az = 1.1045as in this case and the lattice is
stretched in z-direction with further 3%.

Elastic correction ΔWk contributes to the total energy barrier ΔE
whenever the atom is attached to a step at height k and is attempting
a hop to the upper terrace. Such a simplification of the heteroepitaxial
KMC model is justified by the observation that the material supply to
a growing island is governed by a ring-shaped area of compressive
strain (see e.g. [21]). The calculation of ΔWk is based on the assumption
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