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a b s t r a c t 

We study the internal alignment of a statistical ensemble of Gaussian random ellipsoids with respect 

to the radiation direction. We solve the rigid body dynamics due to scattering forces and torques, us- 

ing a numerically exact and efficient T -matrix solver for arbitrary particle shapes and compositions. We 

then compare the polarization of the aligned ensemble to a randomly oriented ensemble and a perfectly 

aligned ensemble. We find that the ensemble becomes partially aligned under monochromatic radiation 

and that the internal alignment has an significant effect on the intensity and polarization of the scattered 

light. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Understanding the statistical behavior of dust is crucial in 

interpretation of observational results and in the tackling of in- 

verse problems, such as deducing magnetic field properties from 

observed polarization [1] or dust properties in general. 

Aligned dust particles were shown to be the cause of interstel- 

lar polarization in the near-infrared and the visible light regimes 

in 1949 independently by Hall and Hiltner [2,3] . In a few years, 

the discussion about the causes of alignment were started by 

Davis and Greenstein [4] . In the following several decades, the 

dominating mechanism of alignment was debated, until radiative 

torques became the leading explanation to observations, with 

other effects contributing in different local environments [5,6] . 

Even though the subtle interactions causing many local ab- 

normalities in the observation data are understood better than 

ever (see current state in [7,8] and references therein), much 

groundwork in understanding the observations can still be done. 

For example, statistical modeling of the effect of dust dynamics on 

polarization has been an unreachable computational effort until 

recent years. 

∗ Corresponding author. 

E-mail address: joonas.herranen@helsinki.fi (J. Herranen). 

In this work, our aim is to illustrate the effect of scattering 

of light from dust particles to the polarization of dust using 

state-of-the-art numerical scattering methods. We focus on the 

bare problem on the effect of scattering only to the dynamics, 

leading the way to addition of several physical processes found 

in the interstellar environment, e.g. gas bombardment, Larmor 

precession and paramagnetic relaxation [7] . We model solid dust 

particles using Gaussian random shapes [9,10] . The reaction of the 

particles to the scattering of different wavelengths is studied by 

numerically integrating the equations of motion. The results are 

then used to create an ensemble average of the scattering matrix 

describing angle-dependent intensity and polarization. 

To the best knowledge of the authors, such numerically exact 

methods have never been applied in the same scale for dynamical 

systems. 

2. Theory of scattering dynamics 

In this work, the combination of rigid body dynamics, electro- 

magnetic scattering, and radiative forces and torques are shortened 

as scattering dynamics. In scattering dynamics, we will solve the 

equations of motion for a dust particle through direct step-by-step 

calculations. This is possible for an arbitrary particle through a 

fast and accurate way of solving the T -matrix of scattering. 

In the following subsections, the relevant physics in scattering 

dynamics is reviewed. 
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Fig. 1. The position of a tetrahedral model of a solid particle with its principal axes 

with respect to the laboratory coordinates. Each tetrahedron is handled with re- 

spect to the principal axis coordinates. Orientation can be handled in the plane 

wave case separately with e.g., using rotation matrices, describing the orientation 

of the principal axes w.r.t. to the laboratory frame axes. 

2.1. Dynamics of a rigid body 

A rigid body can be used to model a dust particle in almost 

any conceivable situation. Even in such situations, where a real 

dust particle would deform or break, the change in the inertia 

parameters of the particle can be modeled. These situations would, 

of course, change also the corresponding scattering problem so 

that methods introduced later would face considerable problems. 

For this, and the simplicity of notation, we will focus on the 

theory of a strictly rigid body in our model. 

The particle may be a single solid particle, such as illustrated 

in Fig. 1 , or an aggregate. For the purposes of the scattering solver, 

the solid particles are discretized as tetrahedral meshes, where 

each tetrahedron is homogeneous. In both cases, the inertia pa- 

rameters of the particle are solved using the parallel axis theorem. 

Method of reference tetrahedra [11] simplifies the calculation of 

the moment of inertia tensor of an arbitrary tetrahedron. 

Diagonalization of the moment of inertia tensor gives the 

so-called principal axes of the particle. Principal coordinates are 

a type of body coordinates who coincide with the principal axes. 

Thus, the principal coordinate system is defined with respect to 

the laboratory coordinates by an orientation matrix 

P = 

( 

P 1 ,x P 2 ,x P 3 ,x 
P 1 ,y P 2 ,y P 3 ,y 
P 1 ,z P 2 ,z P 3 ,z 

) 

= (a 1 a 2 a 3 ) , (1) 

where column vectors a i are the principal axes of the particle from 

smallest moment of inertia to largest. The equations of rotational 

motion are simplified into Euler’s equations in the principal axes, 

and they are the usual choice for solving rotational dynamics. 

2.2. Electromagnetic forces and torques 

For a general description of scattering, the most important 

quantities are the size parameter of the particle, x = ka = 2 πa/λ, 

the shape and the complex index of refraction n = n Re + i n Im 

of 

the particle. Above, a is the equivalent radius of the particle to 

a sphere of the same volume, k is the wavenumber, and λ the 

wavelength of the incident radiation. Usually, the dimensionless 

size parameter is enough to describe many interesting quantities. 

However, in order to make sense of the dynamical time scales, it 

is temptating to choose a concrete size and density for the particle 

and fix the wavelengths to correspond to certain size parameters. 

Fig. 2. An example of a Gaussian random ellipsoid, represented as a tetrahedral 

mesh, with σ = 0 . 125 , l = 0 . 35 and a : b : c = 1 : 0 . 8 : 0 . 6 . 

In space environments, the incident radiation from starlight is 

mostly visible and infrared light, and can be modeled as plane 

waves. Regarding dust in space, a wavelength range of 200–

20 0 0 nm corresponds to size parameter range 0.03–30 for particles 

ranging from 0.01 μm to 1 μm in equivalent radius. 

The mechanical effects of radiation are described by the 

Maxwell stress tensor, T , which should not be confused with the 

T -matrix. The Maxwell stress tensor has components 

T i j = ε 0 

(
E i E j −

1 

2 

δi j E 
2 
)

+ 

1 

μ0 

(
B i B j −

1 

2 

δi j B 

2 
)
. (2) 

For almost all intents and purposes the term with the Maxwell 

stress tensor dominates the total force in a volume V , 

F = 

∮ 
S 

T · ˆ n d S − ε 0 μ0 

∫ 
V 

∂ 

∂t 
S d V, (3) 

where S is the surface of V , where momentum transfer is occuring. 

This is due to the fact, that the latter term describes the momen- 

tum contained within the volume instead of being transferred into 

it. The latter term, containing the Poynting vector S , varies with 

the frequency of the radiation, and thus for most applications, will 

be averaged out of consideration [12] . 

After averaging, total force and torque will be represented by 

simple surface integrals containing the Maxwell stress tensor, 

F = 

∮ 
S 

T · ˆ n d S, 

N = 

∮ 
S 

r × (T · ˆ n ) d S. (4) 

The torque obtained by solving the scattering problem can be 

written in terms of normalized quantities [13] as 

N = 

λa 2 

2 c 
〈 S 〉 inc Q N , (5) 

where 〈 S 〉 inc is the incident Poynting vector, and Q N is the nor- 

malized quantity, the torque efficiency. In particular the torque 

efficiency can be used to compare results between different 

geometries with the same consistency. 
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