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a b s t r a c t 

The ground-based observations of near-Earth asteroids at large phase angles have shown some fea- 

ture: the linear polarization maximum position of the high-albedo E-type asteroids shifted markedly 

towards smaller phase angles ( αmax ≈ 70 °) with respect to that for the moderate-albedo S-type aster- 

oids ( αmax ≈ 110 °), weakly depending on the wavelength. To study this phenomenon, the theoretical 

approach and the modified T-matrix method (the so-called Sh-matrices method) were used. Theo- 

retical approach was devoted to finding the values of αmax , corresponding to maximal values of positive 

polarization P max . Computer simulations were performed for an ensemble of random Gaussian particles, 

whose scattering properties were averaged over with different particle orientations and size parameters 

in the range X = 2.0 ... 21.0, with the power law distribution X − k , where k = 3.6. The real parts of 

the refractive index m r were 1.5, 1.6 and 1.7. Imaginary part of refractive index varied from m i = 0.0 to 

m i = 0.5. Both theoretical approach and computer simulation showed that the value of αmax strongly de- 

pends on the refractive index. The increase of m i leads to increased αmax and P max . In addition, computer 

simulation shows that the increase of the real part of the refractive index reduces P max . Whereas E-type 

high-albedo asteroids have smaller values of m i , than S -type asteroids, we can conclude, that value 

of αmax of E-type asteroids should be smaller than for S –type ones. This is in qualitative agreement 

with the observed effect in asteroids. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Near-Earth asteroids (NEA) provide good opportunity to get the 

maximal complete (for ground-based observations) phase depen- 

dence of the polarization including the value and position of the 

maximum degree of polarization ( P max , αmax ). It is of great interest 

to determine the optical and physical characteristics of particles in 

the regolith layer of asteroids. First of all, using empirical relation 

log p v = −0.71log P max − 1.63, which reflects the relationship be- 

tween the geometric albedo p v of the surface and the maximum 

polarization, one can obtain albedo of the surface (see, e.g. [1] ). 

However, polarimetric observations of NEA at large phase angles 

are still very rare and do not cover the entire main types of as- 

teroids. At the present time the polarization curves for wide phase 

angle range were obtained only for S- and E- type asteroids. They 

are presented in Fig. 1 . 

Observations confirm the phenomenological Umov effect [ 4 ]. 

The maximum degree of polarization E-type asteroids was much 
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lower ( P max = 1.7 ± 0.2%) then ( P max = 8.1 ± 0.2%) for S-type aster- 

oids in the V-band [5,6] . But the unexpected feature was that the 

polarization maximum position for E-type asteroids was signifi- 

cantly shifted towards small phase angles ( αmax = 71 ± 10 °) in com- 

parison with ( αmax = 110 ± 10 °) for S-type asteroids. The effect of 

particle properties on the polarization characteristics of scattered 

light was studied in a number of papers (see, e.g. [7–11] ). However, 

in these works, the difference in the position of the maximum po- 

larization of different asteroids was not explicitly studied. This pa- 

per is devoted to the study of this observed effect. We focused on 

the influence of real and imaginary parts of the refractive index 

on the linear polarization maximum. Certainly, the polarization 

maximum and its position also depend on the sizes and struc- 

ture of regolith particles, this is a topic for further research. 

In this paper we found an analytical expressions (using 

Hapke’s approach) and carried out a computer simulation. The- 

oretical approach is described in Section 2 . Section 3 is de- 

voted to computer simulation and description of its results. 

Section 4 summarizes the main results of paper. 

http://dx.doi.org/10.1016/j.jqsrt.2017.09.003 
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Fig. 1. Composite phase dependencies of the degree of polarization of moderate- 

albedo S-type asteroids (circles) and high-albedo E-type asteroids (squares) in the 

V band constructed from Asteroid Polarimetric Database V8.0. EAR-A-3-RDR-APD- 

POLARIMETRY-V8.0. NASA Planetary Data System [2] . Curves represent the approxi- 

mation of data by a trigonometric expression [3] . 

2. Theoretical approach 

As is known, positive branch of the linear polarization is con- 

trolled primarily by the properties of the individual particles of 

the medium [12] . So, it is possible to calculate the effects of 

macroscopic roughness on light scattered by a surface having 

an arbitrary diffuse reflectance function [ 12 ]. A theoretical ex- 

pression for P may be derived as follows. The positive branch of 

linear polarization degree of light, scattered by particulate media 

with albedo ω, refractive index of particles m 0 = m r + i • m i in the 

case of the geometry of illumination/observation, where i = ε = 

α
2 

(note, that the geometry of illumination/observation can be any, 

but we choose the above for simplicity ) and macroscopic rough- 

ness, characterized by a mean roughness slope angle θ̄ , can be de- 

scribed by following equation: 
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where α is the phase angle, S e is the total fraction of the light ex- 

ternally incident on the surface of the particle that is specularly 

reflected, R ⊥ and R || are Fresnel reflection coefficients, which de- 

scribe two polarizations of light [13] , H(x) is the Ambartsumian–

Chandrasekhar H function, ω is albedo, K is the porosity co- 

efficient, μ= μe = μ0 e is the cosine of effective angle of inci- 

dence/emergence ( angle of incidence and angle of emergence on 

tilted area with the same phase angle [ 12 ] ). All functions from 

Eq. (1) are described in book [12] in details. 

In what follows, we will need the derivatives of the Fresnel 

coefficients, which can be represented in the form: 
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Moreover, Ambartsumian–Chandrasekhar H function is the so- 

lution of the integral equation [14] : 
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Using an excellent approximation of H ( x ), taken from [12] : 
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where r 0 = (1 −γ)/(1 + γ) and γ = 

√ 

1 − ω . Then we obtain the 

derivation of Ambartsumian–Chandrasekhar function, which is 

very convenient for practical calculations: 
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(6) 

Values of the parameters used for calculation, was 

S e = 0.0587 + 0.8543 R (0) + 0.087 R (0) 2 , where R (0) = R ⊥ (0) = R || (0) - 

Fresnel reflection coefficients at zero phase angle, K = 1 and 

ω = 1 / ( 1 + X m i ) [12] . X is the size parameter, which was chosen 

to be X = 60. 

Fig. 2 shows the phase dependences of linear polarization, cal- 

culated according to the equations from [12] , for different sets 

of parameters: real part of refractive index is equal m r = 1.5 (left 

panel), m r = 1.6 (middle panel) and m r = 1.7 (right panel), corre- 

spondingly. 

One can see that the positive polarization maximum shifts 

when imaginary part of refractive index m i is changed. Can this 

shift be described analytically? 

To derive where the maximum of linear polarization αmax is, 

we should find the roots of following equation: 

∂P 

∂α

∣∣∣∣
α= αmax 

= 0 . (7) 

If we substitute Eq. (1) into (7) , finally we obtain the following 

equation: 
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