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a b s t r a c t 

The evaluation of vector wave fields can be accurately performed by means of diffraction integrals, differ- 

ential equations and also series expansions. In this paper, a Bessel series expansion which basis relies on 

the exact solution of the Helmholtz equation in cylindrical coordinates is theoretically developed for the 

straightforward yet accurate description of low-numerical-aperture focal waves. The validity of this ap- 

proach is confirmed by explicit application to Gaussian beams and apertured focused fields in the paraxial 

regime. Finally we discuss how our procedure can be favorably implemented in scattering problems. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

The description of unbounded wave fields in the form of series 

expansion represents a widely used tool in free space propagation 

[1–3] . For instance, the electric field emerging from a laser device 

is commonly expressed as a combination of either Hermite–Gauss 

or Laguerre–Gauss basis functions taken from the natural modes 

existing in mirror cavities [4–6] . Such procedure, however, seems 

inappropriate for apertured focal waves where diffraction sidelobes 

will impose a strong limitation in its efficient characterization by 

an acceptable truncation of the sequence [7,8] . In these cases, ex- 

pansions in terms of Lommel functions demonstrate a suitable im- 

plementation [9,10] . 

In planar arrangements, two-dimensional (2D) waves satisfying 

the Helmholtz equation can be described in terms of Bessel wave 

functions when they are formulated in cylindrical coordinates [11] . 

This is a method followed for instance in the Mie–Lorenz theory 

applied to scatterers with circular cross section [12–14] . Only a 

small part of the cases analyzed in scattering problems consider 

non-uniform beams, among other reasons due to the complexity of 

the series expansions with cylindrical vector wave functions (also 

spherical vector wave functions) that can be found [15–20] . Par- 

ticularly interesting is the paper from Shogo Kozaki which ana- 

lyzes the case of a Gaussian beam illuminating a cylindrical par- 

ticle, where it is possible to remarkably simplify the analytical de- 
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scription of the beam, under certain approximations, in terms of 

Bessel cylindrical waves [21] . 

A salient feature of these Bessel wave functions is their inher- 

ent localization around the chosen origin of coordinates. Therefore, 

focal waves are generally expected to be favorable candidates to be 

effectively represented by means of a series expansion using Bessel 

wave fields. 

In this paper, we consider 2D paraxial wave fields which are 

localized in the vicinity of a given point, which serves for the con- 

struction of the Bessel wave-functions basis to be used in a series 

expansion. The coefficients of such sequence are estimated by an- 

alyzing the far field of the paraxial wave. This choice reduces the 

resultant calculation to a simple Fourier expansion. The validity of 

this method is finally verified when applied to a Gaussian laser 

beam and also to an apertured focal wave. 

2. Theoretical analysis 

Let us consider a 2D wave field E(x, z) = exp (ikz) U(x, z) prop- 

agating in free space and satisfying the paraxial wave equation, 

∂ 2 x U + 2 ik∂ z U = 0 , where z represents the spatial coordinate along 

the optical axis, x is the transverse coordinate and k = 2 π/λ is the 

wavenumber. Such scalar description of the wave field is fully sat- 

isfactory provided that the electric field is oriented along the y - 

axis, as we will consider here unless otherwise indicated; note that 

the duality theorem enables the use of a scalar wave field also in 

the case that the electric field lies on the xz plane [11] . Note that 

a harmonic time variation exp (−iωt) is here assumed, where ω is 

the time-domain frequency. If the focal point is set at the origin of 

coordinates, (x, z) = (0 , 0) , the wave field at any out-of-focus plane 
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z � = 0 can be determined by means of the Fresnel diffraction inte- 

gral [22] 

E(x, z) = 

exp (ikz) √ 

iλz 

∫ ∞ 

−∞ 

E(x 0 , 0) exp 

[
ik 

2 z 
( x − x 0 ) 

2 

]
dx 0 . (1) 

The characteristic Fraunhofer pattern can be observed well beyond 

the focal plane in the limit | z | → ∞ . In this case, the quadratic 

phase term exp 

(
ik x 2 0 / 2 z 

)
in the integral Eq. (1) is negligible. 

When z > 0, the far field of E ( x, z ) can be expressed as 

E(x, z) → 

exp (ikr) √ 

r 
exp (−iπ/ 4) 

√ 

λa F (θ ) , (2) 

where the angular spectrum 

a F (θ ) = 

1 

λ

∫ ∞ 

−∞ 

E(x 0 , 0) exp ( −ikθx 0 ) dx 0 , (3) 

is simply the Fourier transform of the wave field at the focal plane. 

We point out that Eq. (2) rigorously describes the paraxial wave 

field only in the limit z → ∞ , but it provides accurate results at a 

distance sufficiently far from focus. The azimuthal angle measured 

from the optical axis is given as θ = x/z in the paraxial approxi- 

mation, whereas the radial coordinate is given by r = | z + x 2 / 2 z| . 
In the paraxial regime, the wave function a ( θ ) has significant val- 

ues only when | θ | � 1. 

Now it is clear that a wave expansion can be given by means of 

a Fourier series of the angular spectrum, that is 

a F (θ ) = 

∞ ∑ 

n = −∞ 

a n exp (inθ ) , (4) 

where the Fourier coefficient 

a n = 

1 

2 π

∫ π

−π
a F (θ ) exp (−inθ ) dθ . (5) 

Since the angular spectrum a ( θ ) takes values identically zero in the 

range | θ | > π /2 in the semi-space z > 0, the definite integral given 

in Eq. (5) can be further simplified by extending the interval of in- 

tegration to −∞ < θ < ∞ . Under such approximation, and substi- 

tuting Eq. (3) into (5) , we finally infer that the Fourier coefficient 

of order n 

a n = 

1 

2 π
E 

(
−n 

k 
, 0 

)
, (6) 

depends on the focal field as measured at the off-axis point x = 

−n/k . 

To extend the series expansion of the wave field into the near 

field (note that here we disregard evanescent waves and near field 

refers to waves in the vicinities of focus), we will use the Bessel 

wave functions of the first kind and order n, J n ( kr ), and the Bessel 

functions of the second kind and order n, Y n ( kr ), which are so- 

lutions of the 2D Helmholtz wave equation, ∇ 

2 E + k 2 E = 0 , pro- 

vided that the angular variation of the wave field is given by 

exp ( in θ ) [11] . In particular, the Hankel wave function of the first 

kind H 

(1) 
n (kr) = J n (kr) + iY n (kr) has an asymptotic limit far from 

the origin of coordinates given as 

H 

(1) 
n (kr) → 

√ 

2 

πkr 
exp (ikr) exp (−inπ/ 2) exp (−iπ/ 4) . (7) 

Therefore, an outgoing cylindrical wave field with a specific angu- 

lar momentum can be given in terms of a Hankel wave function of 

the first kind and unique order n . As a consequence, a wave field 

exhibiting an angular spectrum a F ( θ ) in the semi-space z > 0 can 

be expressed as a combination of Hankel wave functions of differ- 

ent orders n as 

E + F (x, z) = π
∞ ∑ 

n = −∞ 

a n exp (inπ/ 2) H 

(1) 
n (kr) exp (inθ ) , (8) 

which in addition can be utilized in the near field. 

Eq. (8) provides the expression of a wave field whose Fraun- 

hofer pattern is given in terms of the wave function a F ( θ ), leading 

to a vanishing far field in z < 0. However, in such semi-space, the 

far field of E ( x, z ) given in Eq. (1) can be expressed as 

E(x, z) → 

exp (−ikr) √ 

r 
exp (iπ/ 4) 

√ 

λa F (θ
′ ) , (9) 

in the limit z → −∞ , where the angle θ ′ = x/z in the parax- 

ial approximation. With the new angular coordinate θ ′ = θ − π, 

we again may describe the Fraunhofer pattern observed at z → 

−∞ by means of the wave function a F ( θ
′ ) which takes signifi- 

cant values for | θ ′ | � 1. Furthermore, the Fourier series given in 

Eqs. (4) and (5) are still applicable in this case. Taking into account 

the asymptotic limit of the Hankel wave function of the second 

kind H 

(2) 
n (kr) = J n (kr) − iY n (kr) , written as 

H 

(2) 
n (kr) → 

√ 

2 

πkr 
exp (−ikr) exp (inπ/ 2) exp (iπ/ 4) , (10) 

we may infer a series expansion of a wave field with angular spec- 

trum a F ( θ
′ ) in terms of incoming cylindrical waves, resulting in 

E −F (x, z) = π
∞ ∑ 

n = −∞ 

a n exp (−inπ/ 2) H 

(2) 
n (kr) exp (inθ ′ ) , (11) 

which is also accurate in the near field. 

The appropriate description of the paraxial wave field E ( x, z ) in- 

cludes a far field at z → ∞ in the form of an outgoing cylindrical 

wave patterned by a F ( θ ), and simultaneously at z → −∞ represent- 

ing an ingoing cylindrical wave shaped by the same angular spec- 

trum a F ( θ
′ ). Note that such symmetry around the focal point has 

been analyzed by Collet and Wolf [23] . As a consequence, the wave 

field must be computed as E(x, z) = E + 
F 
(x, z) + E −

F 
(x, z) , which in 

cylindrical coordinates is expressed as 

E(r, θ ) = 2 π
∞ ∑ 

n = −∞ 

i n a n J n (kr) exp (inθ ) . (12) 

This is the main result of our study, together with the fact that the 

Fourier coefficients as given in Eq. (6) can be achieved in terms of 

the focal wave field. We conclude that a cylindrical, paraxial wave 

field can be accurately described by a series expansion sustained 

by Bessel wave functions which are solutions of the 2D Helmholtz 

equation, and with expansion coefficients which are determined 

by the own wave field at specific points of the focal plane. We 

point out that Eq. (12) accurately provides the wave field even at 

angles far from the paraxial regime where tan θ = x/z; of course 

r = 

√ 

x 2 + z 2 denotes the distance from focus to the observation 

point. 

In centrosymmetric field distributions where E(−x, z) = E(x, z) , 

what occurs simply if the field is symmetric with respect to the 

origin of coordinates at the focal plane, a reduced expression of 

the series expansion can be deduced. In this case, a −n = a n as in- 

ferred from Eq. (6) . By using the following property of Bessel func- 

tions of negative order, J −n (α) = (−1) n J n (α) , we finally may re- 

duce Eq. (12) to 

E(r, θ ) = E 0 J 0 (kr) + 4 π
∞ ∑ 

n =1 

i n a n J n (kr) cos (nθ ) , (13) 

where E 0 = 2 πa 0 is the in-focus wave field. 

3. Implementation in scattering problems 

Let us consider a scatterer embodied in a cylindrical region 

whose axis is set along the y axis and with a radius R , as de- 

picted in Fig. 1 . In order to analytically estimate the scattered wave 
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