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a b s t r a c t 

The aerosol single scattering albedo (SSA) is the dominant intensive particle parameter determining 

aerosols direct radiative forcing. For homogeneous spherical particles and a complex refractive index in- 

dependent of wavelength, the SSA is solely dependent on size parameter (ratio of particle circumference 

and wavelength) and complex refractive index of the particle. Here, we explore this dependency for the 

small and large particle limits with size parameters much smaller and much larger than one. 

We show that in the small particle limit of Rayleigh scattering, a novel, generalized size parameter 

can be introduced that unifies the SSA dependence on particle size parameter independent of complex 

refractive index. In the large particle limit, SSA decreases with increasing product of imaginary part of 

the refractive index and size parameter, another generalized parameter, until this product becomes about 

one, then stays fairly constant until the imaginary part of the refractive index becomes comparable with 

the real part minus one. Beyond this point, particles start to acquire metallic character and SSA quickly 

increases with the imaginary part of the refractive index and approaches one. 

© 2017 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

1. Introduction 

The aerosol single scattering albedo (SSA) is the dominant 

intensive particle parameter determining aerosol direct radiative 

forcing. Chýlek and Wong [6] have given a simple analytical equa- 

tion that estimates aerosol radiative forcing as function of SSA and 

the aerosol upscatter fraction. This equation becomes very use- 

ful when the aerosol upscatter fraction is properly related to the 

aerosol backscatter fraction or the asymmetry parameter [17] . Re- 

cently, the aerosol radiative forcing equation of Chýlek and Wong 

[6] has been compared with the output of a global Monte-Carlo 

Aerosol Cloud Radiation (MACR) model and been found adequate 

for cloud-free conditions [8] . 

For homogeneous, spherical particles, the SSA can easily be ob- 

tained from Mie theory [13] calculations as function of the particle 

complex refractive index m with 

m = n + i κ, (1) 
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where n and κ are the real and imaginary parts of the refractive 

index, respectively, and the size parameter x with 

x = 

πD 

λ
, (2) 

where D is the particle diameter and λ the wavelength of the 

incident light. Note that the bulk or material absorption coeffi- 

cient α = 4 πκ/ λ is directly related to the imaginary parts of the 

refractive index. For a complex refractive index independent of 

wavelength, the SSA is solely dependent on size parameter x and 

complex refractive index m . We build upon the initial discussions 

of aerosol SSA size dependence by Moosmüller and Arnott [15] , 

Moosmüller et al. [16] , and Sorensen [19] . In Fig. 1 , we show a 

log-log plot of single scattering albedo ( SSA ) calculated with Mie 

(solid lines) and Rayleigh (dashed narrow lines) theory as function 

of size parameter x for several different values of the imaginary 

part κ of the particle refractive index and a typical real part (i.e., 

n = 1.5). In this figure, three different regimes can be distinguished 

and are approximately separated by vertical dashed lines: (1) The 

Rayleigh regime where x << 1 and consequently the incident light 

wave uniformly penetrates the particle and light scattered by the 

different sub-volumes of the particle is in phase, with ampli- 

tudes coherently adding. This leads to scattering and absorption 

cross-sections proportional to particle volume squared and volume, 
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Fig. 1. Single scattering albedo SSA as function of size parameter x for a refractive index m = 1.5 + i κ with Mie and Rayleigh calculations shown as solid and dashed lines, 

respectively. Vertical dashed lines indicate approximate boundaries between Rayleigh, peak, and geometric regimes. (For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this article.) 

respectively, and to an SSA quickly increasing with size parame- 

ter x ; (2) The “peak” regime, where for small imaginary parts of 

the refractive index (i.e., κ << 1), the SSA peaks and shows ripples; 

and (3) the geometric optics regime of our everyday visual expe- 

rience, where the SSA is independent of size parameter x . In the 

following, we will discuss the small and large particle limits of SSA 

in the context of Fig. 1 . 

2. Small particle limit 

In the small particle limit ( x << 1) we can use Rayleigh the- 

ory for a simpler and more understandable description of particle 

scattering and absorption than given by Mie theory [4] . Rayleigh 

theory uses the Lorentz-Lorenz factor LL ( m ) [11,12] given by 

LL ( m ) = 

m 

2 − 1 

m 

2 + 2 

, (3a) 

with E ( m ) and F ( m ) conventionally used to denote imaginary part 

and complex square of LL , respectively [19] as 

E ( m ) = Im { LL ( m ) } and F ( m ) = | LL ( m ) | 2 . (3b) 

In the Rayleigh regime ( x << 1), Rayleigh particle scattering ef- 

ficiency Q sca_Ray and absorption efficiency Q abs_Ray (both ratios of 

optical to geometric cross-section) can be written simply as 

Q sca _ Ray ( x, m ) = 

8 

3 

x 4 F ( m ) and (4a) 

Q abs _ Ray ( x, m ) = 4 xE ( m ) . (4b) 

The SSA, the ratio of scattering and extinction cross-sections 

(where the extinction cross-section is the sum of scattering and 

absorption cross-sections) can be written in terms of efficiencies 

as 

SSA ( x, m ) = 

Q sca 

Q ext 
= 

Q sca 

Q sca + Q abs 

= 

[ 
1 + 

Q abs 

Q sca 

] −1 

, (5a) 

where Q ext is the extinction efficiency. Using the explicit expres- 

sions for Q sca_Ray and Q abs_Ray given in Eq. (4) yields SSA Ray , the SSA 

in the Rayleigh regime as 

SS A Ray ( x, m ) = 

[ 

1 + 

1 . 5 (
F ( m ) 
E ( m ) 

)
x 3 

] −1 

. (5b) 

Defining a function f of the complex refractive m as the ratio of 

F ( m ) and E ( m ) 

f ( m ) = 

F ( m ) 

E ( m ) 
(5c) 

allows one to write 

SS A Ray ( x, m ) = 

[
1 + 

1 . 5 

f ( m ) x 3 

]−1 

, (5d) 

where the dependence of SSA Ray on size parameter x and refractive 

index m is cleanly separated. This expression can be expanded into 

a power series with respect to size parameter x as 

SS A Ray ( x, m ) = 

2 

3 

f ( m ) x 3 − 4 

9 

f ( m ) 
2 x 6 + 

8 

27 

f ( m ) 
3 x 9 − . . . , (5e) 

where for x << 1, SSA Ray is proportional to x 3 and to f ( m ). With in- 

creasing x , higher order terms come into play and SSA Ray converges 

monotonically to one ( Fig. 1 ). However, as x increases, we leave the 

Rayleigh regime and Eq. (5) are no longer valid; the Rayleigh solu- 

tion diverges from the Mie result ( Fig. 1 ). 

Within the Rayleigh regime, the refractive index function f ( m ) 

determines the dependence of the SSA Ray on the refractive index 

m . For a common real part of the refractive index, that is n = 1.5, 

f ( m ) and therefore SSA Ray have one minimum (i.e., local and global; 

see Fig. 2 ) for κmin ( n = 1.5) = 0.4673 with 

f min ( 1 . 5 + i κ) = f ( 1 . 5 + i 0 . 4673 ) = 0 . 7204 and consequently 

(6a) 

SS A Ray _ min ( 1 . 5 + i κ) = SS A Ray ( 1 . 5 + i 0 . 4673 ) 

= 

[ 
1 + 

1 . 5 

0 . 7204 x 3 

] −1 

. (6b) 

A plot of this minimum SSA Ray as function of x for κ = 0.4673 is 

included in Fig. 1 . 

Obviously, the imaginary part of the refractive index yielding 

minimum f ( m ) for any size parameter in the Rayleigh regime is 

a function of the real part n of the refractive index. Fig. 3 shows 

a contour plot of the refractive index function f ( m ) as function of 
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