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a b s t r a c t 

The laser diffraction method is widely used to measure particle size distributions. It is generally accepted 

that the scattering angle becomes smaller and the angles to the location of the main peak of scattered 

energy distributions in laser diffraction instruments shift to smaller values with increasing particle size. 

This specific principle forms the foundation of the laser diffraction method. However, this principle is 

not entirely correct for non-absorbing particles in certain size ranges and these particle size ranges are 

called anomalous size ranges. Here, we derive the analytical formulae for the bounds of the anomalous 

size ranges and discuss the influence of the width of the size segments on the signature of the Mie 

scattering kernel. This anomalous signature of the Mie scattering kernel will result in an indetermination 

of the particle size distribution when measured by laser diffraction instruments in the anomalous size 

ranges. By using the singular-value decomposition method we interpret the mechanism of occurrence of 

this indetermination in detail and then validate its existence by using inversion simulations. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Laser diffraction is one of the most popular methods of char- 

acterizing particles by measuring the light they scatter. Measure- 

ments executed according to this method are fast, nonintrusive, re- 

liable, and are widely used in spray and solid particle diagnostics. 

The light scattered by a single spherical particle can be strictly de- 

scribed by the Mie theory, which is based on Maxwell’s equations 

[1] . Instruments based on this method are called laser diffraction 

instruments. In laser diffraction instruments, the intensity of the 

scattered light of particles is usually obtained by accumulating a 

series of discrete photoelectric detections and the integration on 

the detections leads to a scattered energy distribution (SED). The 

particle size distribution (PSD) can be inverted from the measured 

SED. Although it has been around 50 years since the appearance of 

the first laser diffraction instrument, the traditional understanding 

of the basic scattering laws of particles is not entirely correct. It is 

reported that the angles to the location of the main peak of SEDs 

shift to large values and the Airy disk size of non-absorbing spher- 

ical particles becomes larger with increasing particle size in certain 

size ranges and these phenomena are called anomalous change 
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of scattered energy distribution(ACSED) and anomalous change of 

Airy disk (ACAD) respectively [2,3] . In literature [3] , it is proved 

that ACAD is caused by the interference of the diffracted light and 

the refracted light; therefore, it only exists for non-absorbing par- 

ticles and weakly absorbing particles. Moreover, the analytical for- 

mulae for the bounds of the size ranges where ACAD occurs are 

also derived and the laws of ACAD are obtained in literature [3] . 

One may infer that ACSED and ACAD are caused by the same 

reason, although literature [2] points out the influence of ACSED 

on particle size analysis through concrete examples, it lacks uni- 

versal arguments. In this paper, we mainly investigate the laws of 

ACSED and its influence on the Mie scattering kernel. Then, by us- 

ing the singular-value decomposition (SVD) method, we interpret 

how this anomalous signature of the Mie scattering kernel influ- 

ences the inverse procedure. Then, through inversion simulations 

of the forward directions, we validate the existence of the indeter- 

mination of particle sizing in the anomalous size ranges. 

2. Principle of the laser diffraction method 

A typical set-up for a laser diffraction instrument is given in 

Fig. 1 . An expanded laser source illuminates particles in the mea- 

suring zone and the scattered light is measured by detectors at the 

focal plane of the Fourier lens. The scattering data is converted 

to electrical signals and transmitted to a computer and the PSD 

is then obtained after data processing. The energy E scattered by 

http://dx.doi.org/10.1016/j.jqsrt.2017.05.022 
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Fig. 1. A typical set-up for a laser diffraction instrument. 

a single particle measured by a detector element with an average 

scattering angle of θ i and an area of �s i can be expressed as 

E( θi , α, m ) = 

∫ ∫ 
�s i 

I(θ, α, m ) ds , (1) 

where θ is the scattering angle, α = π d / λ is the size parameter 

( d is the diameter of the particle, λ is the wavelength of light in 

the dispersion medium), m = m 1 / m 2 is the refractive index of the 

particle relative to the dispersion medium, and I ( θ , α, m ) stands 

for the intensity of the scattered light. When the integral interval 

is small, the scattered intensity is approximately linear with the 

changing of the scattering angle. Eq. (1) can be written as 

E( θi , α, m ) ≈ I( θi , α, m )�s i . (2) 

In the ideal design for a laser diffraction instrument, the area 

of a detector element increases linearly with the average scattering 

angle, namely, 

�s i = C θi . (3) 

Here, C is a constant and can be neglected due to the inverse 

procedure, where we only need the relative SED. Assuming that 

the detector elements are continuous and, therefore, the range of 

the scattering angle corresponding to each element is sufficiently 

small, we can rewrite Eq. (2) by substituting Eq. (3) as 

E(θ, α, m ) = I(θ, α, m ) θ . (4) 

In actual laser diffraction instruments, for a PSD with a vol- 

ume frequency of W ( α), the number of particles in the area range 

α→ α + d α is directly proportional to W ( α) d α / α3 . According to 

Eq. (1) , the scattered energy measured by the i th detector element 

can be described as 

E ′ ( θi , m ) = 

∫ 
E ( θi , α, m ) 

W ( α) 

α3 
dα = 

∫ 
W ( α) 

α3 

∫ ∫ 
�s i 

I ( θ, α, m ) dsdα. 

(5) 

The continuous size range is divided into a series of discrete 

size segments: α0 → α1 , α1 → α2 , …, αj- 1 → αj , …, αN- 1 → αN , 

where N is the number of size segments. The volume frequency of 

the j th size segment is denoted as W j and applying this to Eq. (5) , 

E ′ ( θ i , m ) can be denoted as E i and Eq. (5) can be rewritten as 

E i = K i, j W j . (6) 

The Mie scattering kernel K can be described as 

K i, j = 

1 

α j − α j−1 

α j ∫ 
α j−1 

1 

α3 

∫ ∫ 
�s i 

I ( θ, α, m ) ds dα. (7) 

Obviously, Eq. (6) is formulated in terms of a Fredholm integral 

equation of the first kind. Owing to the ill-posedness and strong 

ill-conditioning of Eq. (6) , the direct solution is unstable and unre- 

alistic. Until now, there are plenty of publications focused on solv- 

ing Eq. (6) and a number of algorithms are proposed, such as the 

Twomey method [4] , Projection algorithm [5] , Chahine algorithm 

Fig. 2. SEDs of α = 13.0, 15.7, 19.0, 23.0, 27.8, and 33.7 obtained by using the Mie 

theory for m = 1.2. 

[6–8] and Inverse Monte Carlo method [9] . These algorithms are 

mainly based on the following criteria, { 

M ∑ 

i =1 

(
K i, j W j − E i 

)2 = min 

W j ≥ 0 

, (8) 

where M is the number of detector elements and W j is non- 

negative to make the solutions meaningful. Because of the ill- 

posedness of this inverse problem, there are multiple solutions sat- 

isfying Eq. (8) , most of the solutions may have unrealistic, high fre- 

quency oscillations [10] . To avoid these high frequency oscillations, 

most algorithms apply smoothness criteria in the inverse proce- 

dure [11] . 

3. Anomalous change of the SEDs 

The Mie scattering kernel is directly related to the inverted 

PSD; therefore, it is necessary to analyze the signature of the Mie 

scattering kernel. Although the scattered intensity I ( θ , α, m ) de- 

creases gradually with increasing scattering angle, the first peak 

(hereinafter referred to as the main peak) of the SED is located at 

a certain scattering angle θp . Fig. 2 shows the SEDs of α = 13.0, 

15.7, 19.0, 23.0, 27.8, and 33.7 obtained by using the Mie theory 

for m = 1.2. The angles to the location of the main peaks are de- 

noted as θp1 , θp2 , θp3 , θp4 , θp5 , and θp6 , and the values are 5.59 °, 
4.17 °, 3.19 °, 3.50 °, 2.81 °, and 2.00 ° respectively. To clearly show the 

angles to the location of the main peaks, the maximums of the 

SEDs are normalized to 1. Generally, the angles to the location of 

the main peaks shift to small values with increasing particle size, 

which is consistent with the general understanding. However, the 

angles to the location of the main peaks for α = 19.0 and α = 23.0 

occur in a reversed order. Therefore, the signatures of the SEDs for 

α = 19.0 and α = 23.0 are anomalous. 
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