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a b s t r a c t 

The traditional form of discrete ordinates method is applied to solve the radiative transfer equation in 

plane-parallel semi-transparent media with variable refractive index through using the variable discrete 

ordinate directions and the concept of refracted radiative intensity. The refractive index are taken as con- 

stant in each control volume, such that the direction cosines of radiative rays remain non-variant through 

each control volume, and then, the directions of discrete ordinates are changed locally by passing each 

control volume, according to the Snell’s law of refraction. The results are compared by the previous stud- 

ies in this field. Despite simplicity, the results show that the variable discrete ordinate method has a 

good accuracy in solving the radiative transfer equation in the semi-transparent media with arbitrary 

distribution of refractive index. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

In recent years, much attention has been paid to solve the ra- 

diative transfer equation (RTE) in semi-transparent media (STM), 

because of widespread applications in industries, such as protect- 

ing coating, waveguide materials, optical measurement of flames, 

glass production and so on. As the radiative rays travel in curve 

paths, the analysis of radiative heat transfer in the STM with vari- 

able refractive index is more complicated than that in those par- 

ticipating media with uniform refractive index where the radiative 

rays travel on straight paths. 

Many investigations have been made to present an efficient ap- 

proach to solve the radiation transfer in the STM. Some of the ear- 

liest works on this field were presented by Siegel and Spuckler 

[ 1 , 2 ], who proposed a model to solve the RTE in one-dimensional 

plane-parallel STM by dividing the composite medium into several 

sublayers each at uniform refractive index bounded by diffuse sur- 

faces. The radiative transfer problem in semi-transparent graded 

index media were solved through curved ray-tracing techniques 

by Ben Abdallah et al. [3–6] , Huang et al. [ 7 , 8 ], and Liu and co- 

workers [9–11] . Since the curved ray tracing is complicated, some 

approaches were developed to trace the curve paths by dividing 

the medium into incremental slices where the refractive index is 

essentially assumed constant, and hence, the radiative rays travel 

straight lines. For example, Krishna and Mishra [12] used the dis- 

crete transfer method (DTM) to solve the RTE in plane-parallel STM 

E-mail address: sarvari@uk.ac.ir 

with linear variation of refractive index. Application of the DTM 

was improved to solve the RTE in absorbing-emitting STM with 

arbitrary refractive index distribution by Sarvari [13] who intro- 

duced a new quantity, namely the refracted intensity , by which the 

RTE in non-unit or variable refractive index media may be reduced 

into the regular form of RTE with unit and invariant refractive 

index. 

The discrete ordinate method (DOM), developed by Chan- 

drasekhar [14] and improved during the years by other researchers 

[15–23] , has been widely used because of its simplicity and 

straightforward essence in solving the RTE. In addition, the DOM 

is known as the most compatible approach to combine with other 

control-volume-based methods to solve the combined modes of 

heat transfer. In the DOM, the medium is divided into infinitesimal 

control volumes. The center point of each control volume is the 

source of radiative rays, which propagate into all directions that 

cover a sphere of solid angles. The directional variation of the ra- 

diative intensity is represented by a set of discrete invariant direc- 

tional ordinates spanning the total solid angle range of 4 π . Since 

the radiative rays propagate along curve paths in the STM, the or- 

dinate directions may change according to the Snell’s law of refrac- 

tion [24] . Lemonnier and Le Dez [25] extended the DOM to solve 

the RTE in the plane-parallel STM by splitting the streaming opera- 

tor into two parts to account the spatial and directional variations 

of the intensity, and then they considered an invariant set of or- 

dinate directions and their associated weights. Despite very good 

accuracy, this method is restricted to a monotonic variation of the 

refractive index. This approach were used by Namjoo et al. [26] for 

solving an inverse problem in the STM. 
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Nomenclature 

a anisotropy factor 

G incident radiation, W / m 

2 

I radiative intensity, W / m 

2 sr 

J number of volume elements 

M number of rays propagated from wall surface 

n refractive index 

Q radiative heat flux, W / m 

2 

R wall refractive ratio 

s geometric path length, m 

T temperature, K 

u,v weights 

Greek symbols 

β extinction coefficient, m 

−1 

χ direction cosine of edge direction 

ε emissivity 

� non-dimensional emissive power 

� refracted incident radiation, W / m 

2 

κ absorption coefficient, m 

−1 

μ direction cosine of ordinate direction 

θ polar angle, rad 


 refracted heat flux, W / m 

2 

σ Stefan-Boltzmann constant, W / m 

2 K 

4 

σ s scattering coefficient, m 

−1 

τ optical depth 

ω single scattering albedo 

� non-dimensional heat flux 

� refracted intensity, W / m 

2 sr 

Subscripts 

b blackbody 

w wall 

Superscripts 

+ , − into positive and negative direction 

In this paper a variable discrete ordinates method (VDOM) is 

represented to solve the RTE in absorbing-emitting-scattering STM 

with variable refractive index. In this approach, the regular discrete 

ordinate form of the RTE remains invariant through using the con- 

cept of the refracted intensity [13] , but instead, the set of ordinate 

directions is updated locally to consider the curvature of ray paths, 

so that the number and direction of ordinates may vary locally. 

The accuracy of the present method is examined by comparing its 

results with those obtained by previous studies. Despite simplicity, 

the VDOM has a good accuracy in solving the RTE in the STM with 

arbitrary refractive index profile. 

2. Governing equations 

The RTE and its boundary condition along a pencil of ray in an 

absorbing-emitting-scattering STM are as follows: 

d � 

±

d τs 
+ � 

± = S ±, 0 ≤ ±μ± ≤ 1 (1a) 
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where � = I / n 2 is known as the refracted intensity , μ=cos θ is the 

direction cosine of polar angle, τ s =β s is the optical distance along 

the direction of ray propagation. Here, superscripts – and + denote 

the rays emanating in the negative and positive directions, respec- 

tively, and w 

± denotes the value on upper/lower wall. The source 

term, S , in Eq. (1a) is given by 
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where ω =σ s / β and ϕ are the single scattering albedo and the 

scattering phase function, respectively. 

The refracted heat flux , 
= Q / n 2 , and the refracted incident in- 

tensity , �=G / n 2 , are given by 


 = 2 π

∫ 1 

−1 

� 

±μ± dμ± (3a) 

� = 2 π

∫ 1 

−1 

� 

±d μ± (3b) 

and the divergence of refracted heat flux , ∇·Q / n 2 is obtained by 

∇ · 
 = κ (4 π I b − �) (4) 

3. Numerical modeling of the VDOM 

In the VDOM, the physical medium between parallel plates is 

divided into control volumes. The angular domain on each wall 

surface is divided into equal polar angles. Directions of ordinates at 

wall surfaces are taken along the central directions of polar angles 

(see Fig. 1 ). The directions of ordinates change for the next con- 

trol volumes according to the Snell’s law. The blackbody intensity 

and the radiative properties of the medium are taken as constant 

in each control volume. In addition, the medium refractive index is 

assumed constant in each control volume, such that the radiative 

rays travel straight lines in control volumes, and in consequence, 

the direction cosines of radiative rays remain non-variant through 

each control volume. Hence, the RTE along the ordinate m in con- 

trol volume j may be written as: 

μ±
m, j 

d� 

±
m, j 
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+ � 

±
m, j 

= S ±
m, j 

(5) 

where τ j =β z j is the optical thickness along the z -direction, and 

μ±
m, j 

= cos θ±
m, j 

is the direction cosine of radiative ray into posi- 

tive/negative direction. 

Integrating Eq. (5) over the incremental optical thickness, �τ j , 

leads to the following relation 
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where the subscript j ± denotes the upper/lower interface of control 

volume (see Fig. 1 a). The refracted intensity at each interface may 

be related to the refracted intensity at center of control volume by 

a linear relationship as 

� 

±
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= α � 

±
m, j ± + (1 − α) � 

±
m, j ∓ (7) 

where 1/2 ≤ α ≤ 1 is the weighting factor. Using Eq. (7) , the un- 

known refracted intensities, � 

±
m, j ± , can be eliminated from Eq. (6) , 

and the refracted intensities at the center of control volumes are 

evaluated by 
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A radiation ray redirects as passing the control volume interface 

according to the Snell’s law of refraction 

n j 
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] 1 / 2 

= n j∓1 

[ 
1 − (μ±

m, j∓1 
) 
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and therefore, the direction of associated discrete ordinate may 

changes accordingly. The radiative ray specularly reflects when the 

reflection criterion is satisfied. This criterion is given by [ 
1 − (μ±

m, j 
) 

2 
] 

> 1 (10) 
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