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a b s t r a c t

Linear particle transport in stochastic media is key to such relevant applications as neutron diffusion in
randomly mixed immiscible materials, light propagation through engineered optical materials, and in-
ertial confinement fusion, only to name a few. We extend the pioneering work by Adams, Larsen and
Pomraning [1] (recently revisited by Brantley [2]) by considering a series of benchmark configurations for
mono-energetic and isotropic transport through Markov binary mixtures in dimension d. The stochastic
media are generated by resorting to Poisson random tessellations in d1 slab, d2 extruded, and full d3
geometry. For each realization, particle transport is performed by resorting to the Monte Carlo simula-
tion. The distributions of the transmission and reflection coefficients on the free surfaces of the geometry
are subsequently estimated, and the average values over the ensemble of realizations are computed.
Reference solutions for the benchmark have never been provided before for two- and three-dimensional
Poisson tessellations, and the results presented in this paper might thus be useful in order to validate fast
but approximated models for particle transport in Markov stochastic media, such as the celebrated Chord
Length Sampling algorithm.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Linear transport through heterogeneous and disordered media
emerges in several applications in nuclear science and engineer-
ing. Examples are widespread and concern for instance neutron
diffusion in pebble-bed reactors [3] or randomly mixed immiscible
materials [4,5], and inertial confinement fusion [6–8]. Besides, the
spectrum of applications is fairly broad and far reaching [9,10], and
concerns also light propagation through engineered optical ma-
terials [11–13] or turbid media [14–16], tracer diffusion in biolo-
gical tissues [17], and radiation trapping in hot atomic vapours
[18], only to name a few. The key goal of particle transport theory
in stochastic media consists in deriving a formalism for the de-
scription of the ensemble-averaged angular particle flux ωφ〈 ( )〉r, ,
where ωφ ( )r, solves the linear Boltzmann equation

∫ω ω ω ω ωφ Σ φ Σ φ·∇ + ( ) = ( ′ → ) ( ′) ′ + ( )d Sr r r, , , 1s

r and ω denoting the position and direction variables, respectively,
Σ ( )r being the total cross section, ω ωΣ ( ′ → )r,s the differential
scattering cross section, and ω= ( )S S r, the source term. For iso-
tropic scattering, the differential scattering cross section simplifies

to ω ωΣ Σ Ω( ′ → ) = ( )r r, /s s d, where Ωd is the surface of the unit
sphere in dimension d. For the sake of simplicity, we have here
focused our attention to the case of mono-energetic transport in
non-fissile media, in stationary (i.e., time-independent) condi-
tions. However, these hypotheses are not restrictive (see the dis-
cussion in [4]). The stochastic nature of particle transport stems
from the materials composing the traversed medium being ran-
domly distributed according to some statistical law. Hence, the
quantities Σ ( )r , ω ωΣ ( ′ → )r,s and ω( )S r, are in principle random
variables.

A physical realization of the system under analysis will be de-
noted by a state q, associated to some stationary probability ( )q
of observing the state q. To each state q thus correspond the
functions Σ ( )( ) rq , ω ωΣ ( ′ → )( ) r,s

q and ω( )( )S r,q for the material
properties [5,4]. The ensemble-averaged angular flux is then for-
mally defined as

∫ω ωφ φ〈 ( )〉 = ( ) ( ) ( )
( )q dqr r, , , 2
q

where ωφ ( )( ) r,q is the solution of the Boltzmann Eq. (1) corre-
sponding to a single realization q. The ensemble-averaged angular
flux can be decomposed as

∑ω ωφ φ〈 ( )〉 = ( )〈 ( )〉
( )

pr r r, , ,
3i

i i

where ∫ χ( ) = ( ) ( )p q dqr ri i is the probability of finding the
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material of index i at position r (we denote by χ ( )ri the marker
function of material i at position r), and ωφ〈 ( )〉r,i is restricted to
those realizations that have material i at position r:

∫ω ωφ χ φ( )〈 ( )〉 = ( ) ( ) ( ) ( )
( )p q dqr r r r, , . 4i i i
q

A widely adopted model of random media is the so-called
binary stochastic mixing, where only two immiscible materials
(say α and β) are present [4]. Then, by averaging Eq. (1) over
realizations having material α at r, we obtain the following
equation for ωφ〈 ( )〉α r,

∫ω ω ωΣ φ
Σ

Ω
φ·∇ + 〈 〉 = 〈 ( ′)〉 ′ + +

( )α α α
α α

α α α α β⎡⎣ ⎤⎦p
p

d p S Ur, ,
5

s

d

,
,

where

φ φ= 〈 〉 − 〈 〉 ( )α β β α β α α β α βU p p , 6, , , , ,

with ω= ( )p p r,i j i j, , denoting the probability per unit length of
crossing the interface from material i to material j for a particle
located at r and travelling in direction ω, and φ〈 〉i j, denoting the
angular flux averaged over those realizations where there is a
transition from material i to material j for a particle located at r
and travelling in direction ω. The cross sections Σα and Σ αs, are
those of material α. The equation for ωφ〈 ( )〉β r, is immediately
obtained from Eq. (5) by permuting the indexes α and β.

The set of equations in Eq. (5) (whose derivation contains no
approximations so far) can be shown to form an infinite hierarchy,
since the terms φ〈 〉α in Eq. (6) would involve equations for the
conditional averages φ〈 〉β α, and φ〈 〉α β, , which in turn would further
involve additional conditional averages [4,5]. Generally speaking,
it is necessary to truncate the infinite set of equations with some
appropriate model leading to a closure formula, depending on the
underlying mixing statistics. The celebrated Levermore-Pomraning
model assumes for instance φ φ〈 〉 = 〈 〉α β α, for homogeneous Markov
mixing statistics [4,19], which is defined by

ω
ωΛ

( ) =
( ) ( )

p
p

r, ,
7i j

i

i
,

depending on the starting position alone, where ωΛ ( )i is the mean
chord length for trajectories crossing material i in direction ω.
Several generalisations of this model have been later proposed,
including higher-order closure schemes [4,20]. In parallel, Monte
Carlo algorithms such as the Chord Length Sampling have been
conceived in order to formally solve the Levermore-Pomraning
model, and have been further extended so as to include partial
memory effects due to correlations for particles crossing back and
forth the same materials [6,7]. Their common feature is that they
allow a simpler, albeit approximate, treatment of transport in
stochastic mixtures, which might be convenient in practical ap-
plications where a trade-off between computational time and
precision can be worth considering. Originally formulated for
Markov statistics, these models have been largely applied also to
random inclusions of disks or spheres into background matrices,
with application to pebble-bed and very high temperature gas-
cooled reactors [21,22].

In order to assess the accuracy of the various approximate
models it is therefore mandatory to compute reference solutions
for the exact Eqs. (5). Such solutions can be obtained in the fol-
lowing way: first, a realization of the medium is sampled from the
underlying mixing statistics; then, the linear transport equations
corresponding to this realization are solved by either deterministic
or Monte Carlo methods, and the physical observables of interest
are determined; this procedure is repeated several times so as to
create a sufficiently large collection of realizations, and ensemble
averages are finally taken for the physical observables. For this
purpose, a number of benchmark problems for Markov mixing

have been proposed in the literature so far [1,5,2,23–25], with
focus exclusively on d1 geometries, either of the rod or slab type.

The aim of this work is two-fold. First, we will revisit the
classical benchmark problem proposed by Adams, Larsen and
Pomraning for transport in stochastic media [1]. We will present
reference solutions obtained by Monte Carlo particle transport
simulation through d1 slab, d2 extruded and d3 tessellations of a
finite-size box with Markov mixing. We will compute the particle
flux φ〈 〉, the transmission coefficient 〈 〉T and the reflection coef-
ficient 〈 〉R by taking ensemble averages over the realizations; the
dispersion of the physical observables around their average values
will be assessed by evaluating their full distributions. Second, we
will discuss the impact of dimension on the obtained results, since
benchmark solutions for transport in d2 extruded and d3 tessel-
lations have never been addressed before [26].

This paper is organized as follows. In Section 2 we recall the
benchmark specifications and set up the required notation. In
Section 3 we discuss the algorithms needed in order to generate
the material configurations corresponding to homogeneous Mar-
kov mixing, by resorting to the so-called colored Poisson tessel-
lations. Then, in Section 4 we will present our simulation results
for the physical observables of interest, and discuss the obtained
findings. Conclusions will be finally drawn in Section 5.

2. Benchmark specifications

The benchmark specifications for our work are essentially ta-
ken from those originally proposed in [1] and [5], and later ex-
tended in [25,2,23,24]. We consider single-speed linear particle
transport through a stochastic binary medium with homogeneous
Markov mixing. The medium is non-multiplying, with isotropic
scattering. The geometry consists of a cubic box of side L¼10, with
reflective boundary conditions on all sides of the box except two
opposite faces (say those perpendicular to the x axis), where
leakage boundary conditions are imposed: particles that leave the
domain through these faces can not re-enter. Lengths are ex-
pressed in arbitrary units. In [1] and [5], system sizes L¼0.1 and
L¼1 were also considered, but in this work we will focus on the
case L¼10, which leads to more physically relevant configurations.
Two kinds of non-stochastic sources will be considered: either an
imposed normalized incident angular flux on the leakage surface
at x¼0 (with zero interior sources), or a distributed homogeneous
and isotropic normalized interior source (with zero incident an-
gular flux on the leakage surfaces). Following the notation in [2],
the benchmark configurations pertaining to the former kind of
source will be called suite I, whereas those pertaining to the latter
will be called suite II. The material properties for the Markov
mixing are entirely defined by assigning the average chord length
for each material α β=i , , namely Λi, which in turn allows deriving
the homogeneous probability pi of finding material i at an arbitrary
location within the box, namely

= Λ
Λ + Λ ( )

p .
8i

i

i j

Note that the material probability pi defines the volume fraction
for material i. The cross sections for each material will be denoted
as customary Σi for the total cross section and Σs i, for the scat-
tering cross section. The average number of particles surviving a
collision in material i will be denoted by Σ Σ= ≤c / 1i s i i, . The phy-
sical parameters for the benchmark configurations are recalled in
Tables 1 and 2 : three cases (numbered 1, 2 and 3) are considered,
each containing three sub-cases (noted a, b and c). The case
numbers correspond to permutation of materials, whereas the
sub-cases represents varying ratios of ci for each material.
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