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a b s t r a c t

In many previous studies where a tightly focused beam is scattered by a spherical particle,
either the experimental conditions were such that evanescent components were absent
from the angular spectrum of the incident beam, or if they were present, it was assumed
that their contribution to scattering was small with respect to that of the oscillatory
components, and could safely be ignored. In this paper the contribution of the evanescent
components is explicitly calculated and the validity of their neglect in various situations is
assessed. It is demonstrated that when a particle whose size is comparable to the
wavelength is located near the plane in which the strength of the evanescent components
is maximized, the angular spectrum components just inside the evanescent regime, when
added to the contribution of the oscillatory components, can possibly make a significant
contribution to the shape coefficients of the incident beam.

& 2015 Elsevier Ltd. All rights reserved.

1. Background, notation, and motivation

The angular spectrum of a tightly focused beam in
general contains both oscillatory and evanescent compo-
nents. This paper studies the contribution of the evanes-
cent components to scattering by a spherical particle
placed in the beam. But before the specific goals of this
paper can be clearly stated, a certain amount of context
must be given. When a monochromatic electromagnetic
beam propagating in the þz direction and having wave-
length λ and wave number k¼2π/λ is incident on a
spherical particle of radius a and refractive index N, the
interaction of the beam with the particle produces out-
going scattered waves. The fields of the incident beam can
be written [1] as a sum of transverse electric (TE) and
transverse magnetic (TM) spherical multipole waves of the

first type, M(1)
n,m(kr) and N(1)

n,m(kr),

E rð Þ ¼
X1
n ¼ 1

Xn
m ¼ �n

in �1ð ÞmCn;m � igTEn;mM
ð1Þ

n;m krð Þ–gTMn;mN
ð1Þ

n;m krð Þ
h i

ð1aÞ

cB rð Þ ¼
X1
n ¼ 1

Xn
m ¼ �n

in �1ð ÞmCn;m igTMn;mM
ð1Þ
n;m krð Þ–gTEn;mNð1Þ

n;m krð Þ
h i

;

ð1bÞ
where the time dependence exp(� iωt) is left implicit, and

Cn;m ¼ π 2nþ1ð Þ nþmð Þ!= n nþ1ð Þ n�mð Þ!½ �� �1=2
: ð2Þ

The shape coefficients of the incident beam are gTEn,m and gTMn,m,
n is the integer partial wave number with 1rno1, and m
is the azimuthal mode number with �nrmrn. The factor
Cn,m in Eq.(2) is chosen so that the m¼1 beam shape
coefficients for a plane wave traveling in the þz direction
and linearly polarized in the x direction are gTEn,1¼� i and
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gTMn,1¼1. The spherical mutipole wave M(1)
n,m(kr) is related to

the transverse vector spherical harmonic Xn,m(θ,φ) in the
notation of [1] via

M 1ð Þ
n;m krð Þ ¼ jn krð ÞXn;m θ;φ

� �
; ð3Þ

where jn(kr) is a spherical Bessel function. Similarly, N(1)
n,m(kr)

is a combination of the radial and transverse vector spherical
harmonics Yn,m(θ,φ) and Zn,m(θ,φ), respectively,

N 1ð Þ
n;m krð Þ ¼ i n nþ1ð Þ½ �1=2 jn krð Þ= krð Þ� �

Yn;m θ;φ
� �

þ 1=kr
� �½krjnðkrÞ�0Zn;m θ;φ

� �
; ð4Þ

where the prime symbol indicates the derivative of a
function with respect to its argument. The three orthogonal
vector spherical harmonics are

Xn;m θ;φ
� �¼ n nþ1ð Þ½ ��1=2LYm

n θ;φ
� � ð5aÞ

Yn;m θ;φ
� �¼ Ym

n θ;φ
� �

ur ð5bÞ

Zn;m θ;φ
� �¼ ur � Xn;m θ;φ

� � ð5cÞ
where L is the angular momentum operator [2] and Yn

m
(θ,φ)

are scalar spherical harmonics in the notation of [3]. These in
turn are related to associated Legendre functions Pn

m
[cos(θ)]

in the notation of [3] and the azimuthal function exp(imφ).
There are many different conventions for associated
Legendre functions, all differing from each other by either a
constant of proportionality or an occasional minus sign. In
this paper the above convention is followed since it straight-
forwardly generalizes to associated Legendre functions of a
complex argument [4].

In generalized Lorenz–Mie theory (GLMT) for scattering
of the beam by a spherical particle, the outgoing scattered
waves may also be decomposed into a sum of TE and TM
spherical multipole waves of the third type, for which the
radial function in Eqs. (3) and (4) is the first outgoing
spherical Hankel function h(1)n (kr). The scattering ampli-
tudes S1(θ,φ) and S2(θ,φ) are

S1 θ;φð Þ ¼ ∑
∞

n ¼ 1
∑
n

m ¼ −n
2nþ1ð Þ= 2n nþ1ð Þ½ �� �

−imgTMn;manπ
mj j
n

�

cos θð Þ½ �þgTEn;mbnτ
mj j
n cos θð Þ½ �

o
exp imφð Þ ð6aÞ

S2 θ;φð Þ ¼ ∑
∞

n ¼ 1
∑
n

m ¼ −n
2nþ1ð Þ= 2n nþ1ð Þ½ �� �

imgTEn;mbnπ
mj j
n

n

½ cos θð ÞþgTMn;manτ
mj j
n cos θð Þ½ �

o
exp imφð Þ ð6bÞ

where an and bn are the partial wave scattering amplitudes
of Lorenz–Mie theory for scattering by a plane wave
propagating in the z direction [5], and πn

|m|
[cos(θ)] and τn

|

m|
[cos(θ)] are the angular functions of GLMT [6]. Other

scattering quantities of interest, such as the transverse and
longitudinal components of the trapping force for laser
tweezers applications, contain more complicated combina-
tions of gTMn,m, gTEn,m, an, and bn [6]. Given the functional form of
the fields of the incident beam, the shape coefficients may
be calculated most simply by inverting Eqs.(1a) and (1b),

gTEn;m ¼− −ið Þnþ1 −1ð Þm 1=Cn;m
� �

1=jn krð Þ� �
∫
π

0
sin θð Þdθ

∫
2π

0
dφX�

n;m θ;φð Þ � E r; θ;φð Þ ð7aÞ

gTMn;m ¼ −ið Þnþ1 −1ð Þm 1=Cn;m
� �

1=jn krð Þ� �
∫ π
0 sin θð Þdθ

∫ 2π
0 dφX�

n;m θ;φð Þ � cB r; θ;φð Þ; ð7bÞ

for which only the transverse components of the beam field
contribute to the integrand, and where the asterisk symbol
denotes complex conjugation. The kr-dependent prefactor
in Eqs. (7a) and (7b) will be canceled by a compensating
term resulting from the evaluation of the double integral if
E(r,θ,φ) and B(r,θ,φ) are an exact solution of Maxwell's
equations and the vector wave equation. This insures that
the beam shape coefficients are constants. Unfortunately,
the functional form of the fields is exactly known for only a
few different types of beams, such as a plane wave, a Bessel
beam, and a few models of a nominally Gaussian beam. For
beams where only approximate functional forms of the
fields are known, a residual amount of kr-dependence
remains in the beam shape coefficients after the integra-
tions have been performed. One approach to this problem is
to evaluate the residual kr-dependence at a convenient
location [7,8]. Another approach is to remodel the approx-
imate beam into a very similar beam that is a solution of
Maxwell's equations and the vector wave equation [9]. Yet a
third approach is to decompose the beam into an angular
spectrum of plane waves [10], which also carries out a type
of remodeling if the beam model is approximate. The
advantage of this third approach is that the beam shape
coefficients of each plane wave component in the angular
spectrum are analytically known (see Refs. [31–36] of [11]
for the history of the evaluation of these coefficients). The
total shape coefficients of the incident beam are then the
shape coefficients of each plane wave component weighted
by their respective amplitudes and phases, and then
summed over all the components [12]. This is the approach
taken in this paper.

As a historical aside, it should be mentioned in passing
that the beam shape coefficients can also be obtained by
integrating the scalar product of the radial or transverse
components of E(r,θ,φ) and B(r,θ,φ) with either [13] Yn

n,m(θ,
φ) or Znn,m(θ,φ), rather than with Xn

n,m(θ,φ) as was done in
Eqs. (7a) and (7b). However, the details of the cancellation of
the respective kr-dependent prefactor is more complicated
for these two alternatives than it is for Eqs.(7a) and (7b). In
particular, the details of the cancelation are most elaborate
when Yn

n,m(θ,φ) along with the radial components of the
beam fields are used. The key integral required in this
approach was evaluated in [14], which corrected an earlier
sign error in [15], (see also [16] in this regard). The use of
Yn

n,m(θ,φ) along with the radial components of the fields
was the standard approach [6] for evaluating the beam
shape coefficients in the Bromwich potential formulation of
GLMT [17].

Returning to the main development presented in this
paper, over the years much effort has gone into calculating
gTEn,m and gTMn,m for a number of transversely localized beams,
most notably for various models of a nominally Gaussian
beam. There are, however, other possibilities for the
incident beam that fall outside of the usual choices.
Consider for example a linearly polarized plane wave
component in the angular spectrum of an incident beam
whose propagation direction is in the xz plane and having
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