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a b s t r a c t

We study heat transport across individual grain boundaries in suspended monolayer graphene using
extensive classical molecular dynamics (MD) simulations. We construct bicrystalline graphene samples
containing grain boundaries with symmetric tilt angles using the two-dimensional phase field crystal
method and then relax the samples with MD. The corresponding Kapitza resistances are then computed
using nonequilibrium MD simulations. We find that the Kapitza resistance depends strongly on the tilt
angle and shows a clear correlation with the average density of defects in a given grain boundary, but is
not strongly correlated with the grain boundary line tension. We also show that quantum effects are
significant in quantitative determination of the Kapitza resistance by applying the mode-by-mode
quantum correction to the classical MD data. The corrected data are in good agreement with quantum
mechanical Landauer-Bütticker calculations.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Graphene [1], the famous two-dimensional allotrope of carbon,
has been demonstrated to have extraordinary electronic [2], me-
chanical [3], and thermal [4] properties in its pristine form. How-
ever, large-scale graphene films, which are needed for industrial
applications are typically grown by chemical vapor deposition [5]
and are polycrystalline in nature [6], consisting of domains of
pristine graphene with varying orientations separated by grain
boundaries (GB) [7e9]. They play a significant or even dominant
role in influencing many properties of graphene [10,11].

One of the most striking properties of pristine graphene is its
extremely high heat conductivity, which has been shown to be in
excess of 5000 W/mK [4,12]. Grain boundaries in graphene act as
line defects or one-dimensional interfaces which leads to a strong
reduction of the heat conductivity in multigrain samples [13,14].
The influence of GBs can be quantified by the Kapitza or thermal

boundary resistance R. The Kapitza resistance of graphene grain
boundaries has been previously computed using molecular dy-
namics (MD) [15,16] and Landauer-Bütticker [17,18] methods, and
has also been measured experimentally [19]. However, these works
have only considered a few separate tilt angles, and a systematic
investigation on the dependence of the Kapitza resistance on the
tilt angle between any two pristine grains is still lacking. The
relevant questions here concern both the magnitude R for different
tilt angles and possible correlations between the structure or line
tension of the GBs and the corresponding value of R.

Modelling realistic graphene GBs has remained a challenge due
to the multiple length and time scales involved. Recently, an effi-
cient multiscale approach [20] for modelling polycrystalline gra-
phene samples was developed based on phase field crystal (PFC)
models [21,22]. The PFC models are a family of continuummethods
for modelling the atomic level structure and energetics of crystals,
and their evolution at diffusive time scales (as compared to vibra-
tional time scales in MD). The PFC models retain full information
about the atomic structure and elasticity of the solid [22]. It has
been shown [20] that using the PFC approach in two-dimensional
space one can obtain large, realistic and locally relaxed
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microstructures that can be mapped to atomic coordinates for
further relaxation in three-dimensional space with the usual
atomistic simulation methods.

In this work, we employ the multiscale PFC strategy of Ref. [20]
to generate large samples of tilted, bicrystalline graphene with a
well-defined GB between the two grains. These samples are then
further relaxed with MD at T ¼ 300 K. A heat current is generated
across the bicrystals using nonequilibrium MD (NEMD) simula-
tions, and the Kapitza resistance is computed from the temperature
drop across the GB. We map the values of R(q) for a range of
different tilt angles q and demonstrate how R correlates with the
structure of the GBs. Finally, we demonstrate that quantum cor-
rections need to be included in R to obtain quantitative agreement
with experiments and lattice dynamical calculations.

2. Models and methods

2.1. PFC models

PFC approaches typically employ a classical density field jðrÞ to
describe the systems. The ground state of j is governed by a free
energy functional F½jðrÞ� that is minimized either by a periodic or a
constant j, corresponding to crystalline and liquid states, respec-
tively. We use the standard PFC model

F ¼
Z
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where the model parameters ε and t are phenomenological pa-
rameters related to temperature and average density, respectively.
The component

�
q2 þ V2	2 penalizes for deviations from the length

scale set by the wave number q, giving rise to a spatially oscillating
j and to elastic behaviour [21,22]. The crystal structure in the
ground state is dictated by the formulation of F and the average
density of j, and for certain parameter values the ground state of j
displays a honeycomb lattice of density maxima as appropriate for
graphene [20].

The PFC calculations are initialized with symmetrically tilted bi-
crystals in a periodic, two-dimensional computational unit cell. The
initial guess for the crystalline grains is obtained by using the one-
mode approximation [22].
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and by rotating alternatingly by ±q. The tilt angle between two
adjacent grains is q � (�q) ¼ 2q, which ranges from 2q ¼ 0+ to 2q ¼
60+ (see Fig. 1 for examples). We consider a subset of the tilt angles
investigated in Ref. [20], with the exact values being listed in
Table 1. The rotated grains and the unit cell size are matched
together as follows: if just one of the rotated grains filled the whole
unit cell, it would be perfectly continuous at the periodic edges.
Along both interfaces, narrow strips a few atomic spacings wide are
set to the average density e corresponding to a disordered state e

to give the grain boundaries some additional freedom to find their
lowest-energy configuration. We assume non-conserved dynamics
to relax the systems in analogy to chemical vapor deposition [23] e
the number of atoms in the monolayer can vary as if due to ex-
change with a vapor phase. In addition, the unit cell dimensions are
allowed to vary to minimize strain. Further details of the PFC cal-
culations can be found in Ref. [20]. The relaxed density field is
mapped to a discrete set of atomic coordinates suited for the
initialization of MD simulations [20].

2.2. NEMD simulations

We use the NEMD method as implemented in the GPUMD
(graphics processing units molecular dynamics) code [24e26] to
calculate the Kapitza resistance, using the Tersoff [27] potential
with optimized parameters [28] for graphene. The initial structures
obtained by the PFCmethod are rescaled by an appropriate factor to
have zero in-plane stress at 300 K in the MD simulations with the
optimized Tersoff potential [28].

In the NEMD simulations, periodic boundary conditions are
applied in the transverse direction, whereas fixed boundary con-
ditions are applied in the transport direction. We first equilibrate
the system at 1 K for 1 ns, then increase the temperature from 1 K to
300 K during 1 ns, and then equilibrate the system at 300 K for 1 ns.
After these steps, we apply a Nos�e-Hoover chain of thermostats
[29e31] to the heat source and sink, choosing as two blocks of
atoms around the two ends of the system, as schematically shown
in Fig. 2. The temperatures of the heat source and sink are main-
tained at 310 K and 290 K, respectively. We have checked that
steady state can be well established within 5 ns. In view of this, we
calculate the temperature profile T(x) of the system and the energy
exchange rate Q between the system and the thermostats using
data sampled in another 5 ns. The velocity-Verlet integration
scheme [32] with a time step of 1 fs is used for all the calculations.
Three independent calculations are performed for each system and
the error estimates reported in Table 1 correspond to the standard
error of the independent results.

In steady state, apart from the nonlinear regions around the heat
source and the sink intrinsic to the method, a linear temperature
profile can be established on each side of the GB, but with an
inherent discontinuity (temperature jump) at the GB. An example
of this for the systemwith 2q ¼ 9:43+ is shown in Fig. 3. The Kapitza
resistance R is defined as the ratio of the temperature jump DT and
the heat flux J across the grain boundary:

R ¼ DT
J
; (3)

where J can be calculated from the energy exchange rate Q (be-
tween the system and thermostat) and the cross-sectional area S
(graphene thickness is chosen as 0.335 nm in our calculations), i.e.
J ¼ Q/S.

3. Results and discussion

It is well known [15,16,33] that the calculated Kapitza resistance
depends on the sample length in NEMD simulations. Fig. 4 shows
the calculated Kapitza resistance R in the 2q ¼ 9:43+ case as a
function of the sample length Lx. Using fixed boundary conditions
as described above, R saturates at around Lx¼ 400 nm. On the other
hand, using periodic boundaries as described in Ref. [15], R con-
verges more slowly. To this end, we have here used fixed boundary
conditions and a sample length of 400 nm for all the systems. The
calculated temperature jump DT, heat flux J, and Kapitza resistance
R in the 13 bicrystalline systems are listed in Table 1.

The Kapitza resistance calculated from the heat flux does not
contain any information on the contributions from individual
phononmodes. Methods of spectral decomposition of both the heat
current (flux) [37e42] and the temperature [43] within the NEMD
framework have been developed recently. Here, we use the spectral
decomposition formalism as described in Ref. [42] to calculate the
spectral conductance g(u) of the 2q ¼ 9:43+ system. In this method,
one first calculates the following nonequilibrium heat current
correlation function (t is the correlation time):
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