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a b s t r a c t

The superconductivity of the 4-Å single-walled carbon nanotubes (SWCNTs) was discovered more than a
decade ago, and marked the breakthrough of finding superconductivity in pure elemental undoped
carbon compounds. The van Hove singularities in the electronic density of states at the Fermi level in
combination with a large Debye temperature of the SWCNTs are expected to cause an impressively large
superconducting gap. We have developed an innovative computational algorithm specially tailored for
the investigation of superconductivity in ultrathin SWCNTs. We predict the superconducting transition
temperature of various thin carbon nanotubes resulting from electron-phonon coupling by an ab-initio
method, taking into account the effect of radial pressure, symmetry, chirality (N,M) and bond lengths. By
optimizing the geometry of the carbon nanotubes, a maximum Tc of 60 K is found. We also use our
method to calculate the Tc of a linear carbon chain embedded in the center of (5,0) SWCNTs. The strong
curvature in the (5,0) carbon nanotubes in the presence of the inner carbon chain provides an alternative
path to increase the Tc of this carbon composite by a factor of 2.2 with respect to the empty (5,0) SWCNTs.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The observation of superconductivity in 4-Å single wall carbon
nanotubes arrays (SWCNTs) was first reported back in 2001 [1], and
further confirmed by more detailed experiments [2]. The super-
conducting transition temperature Tc was observed with onset at
15 K. In a purely one-dimensional (1D) material the electrons form
Cooper pairs at the onset superconducting transition temperature,
however the low-dimensionality causes strong thermal and
quantum fluctuations leading to phase slips events, which cause
finite resistance at any non-zero temperature [3]. This scenario has
been theoretically well described in the framework of the Langer-
Ambegaokar-McCumber-Halperin (LAMH) theory [3,4]. Fortu-
nately, this limitation of 1D superconductors can be overcome by
arranging the superconducting nano-elements in the form of
closely packed arrays of parallel wires [1,5e7,10]. The Josephson
interaction induced by quantum tunneling of Cooper pairs stabi-
lizes then the superconducting phase order parameter and triggers
a dimensional crossover from a 1D fluctuating state at high tem-
peratures to a 3D phase coherent state with vanishing electrical

resistance [5e10]. By drawing a parallel to the geometry of the non-
superconducting graphene, a strong curvature of the graphene
sheet is believed to be the main ingredient to activate the super-
conductivity in thin carbon nanotubes [1,11]. The BCS theory states
that a large electronic density of states (DOS) at the Fermi level and
a high Debye frequency are the essential ingredients for a high Tc in
the case of classical phonon-mediated BCS superconductors [8]. 1D
metallic elements feature van Hove singularities in their electronic
density of states (DOS) at Fermi level, and if by chance such a sin-
gularity could appear at, or in the vicinity of the Fermi level very
high Tc values could result. The Fermi level may be further tuned by
application of pressure or electric gate voltages [12], and in addition
the superconductivity of SWCNTs may be further tunable through
the lateral tube-to-tube distances and bond lengths. However, the
synthesis of high quality carbon nanotubes thinner than 4 Å in
diameter represents a challenge [13]. In addition, no theoretical
model predicting the superconducting transition temperature Tc of
the SWCNTs accurately was reported so far, despite of numerous
first principle calculations that have been reported for SWCNTs
[14,15]. In view of this, we have developed a powerful theoretical
model to accurately predict superconducting parameters of thin
carbon nanotubes. In addition, we address linear carbon chains,
whose existence has been questioned for a long time due to its* Corresponding author. Tel.: þ7 9068158342.
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energetic instability [16]. However, linear carbon nanowires pro-
tected by double walled carbon nanotube (DWCNT) have been
fabricated successfully recently [16], and we will study how the
interaction between the chain and the nanotube can cause super-
conductivity in such a carbon composite. In our simulation the
carbon nanowire is surrounded by a (5,0) SWCNTs. The (5,0)
SWCNTs features a threshold radius, which means that no extra
covalent bond is established radially between the carbon nanowire
and the nanotube.

2. Computational methods

The BCS pairing Hamiltonian, Hpair ¼
P
ks

Eknks

þP
kl
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kYcl[clY, is made up of the single particle energy Ek

relative to the Fermi energy. The interaction Vkl changes the state of
particle from ðl[;�lYÞ to ðk[;�kYÞ. The creation operators, c*k[ and

c*kY, refer to spin up and down respectively, while the particle

number operator is represented by nks and s is the spin index [8].
The ground state of the BCS wavefunction jG is expressed as
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where j40i is the vacuum state with the absence of particles. As

jukj2 þ jvkj2 ¼ 1, the jukj2 means the unoccupied probability. In BCS
material the energy gap is k independent and hence wemay define
D ¼ Dk ¼ �P

l
Vklulvl [8]. The interaction term is originated

from the electron phonon scattering in the expression of
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from linear combinations of the eigenfunctions and polarizations.
The gkk0l is related to the electrostatic integral and lattice vibrations.

The ayqlaql þ 1
2 refers to the quantum number of the phonons, where

q ¼ k� k0 þ G and G correspond to a reciprocal lattice vector [12].
For circular materials like SWCNT, the attractive force acting on

the electrons needs to be modified due to the increase of the
effective atomic number Zeffective [17].

Zeffective ¼ Z
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The Bloch theorem ensures that the wavefunctions of electron j

can be written in the form of jðr þ RÞ ¼ eik$RjðrÞ where k is the
wave number and R is a lattice vector. By comparing the attractive
potential between the circular Uc and planar Up shapes, the Zeffective
is obtainable.

The prediction of the Tc is acquired by computing the scale factor
TcðAÞ
TcðBÞ

¼ DAð0Þ
DBð0Þ , because Dð0ÞfTc per electron [8]. If the Tc of the ma-

terial B is known, the Tc of the material A is predictable according to
our semi-phenomenological scale-factor approach. However, the
ulvl depend on D and hence another transfer function is needed:
According to the BCS theory, the energy gap is expressed as

Dk ¼ �1
2
P

Vkl
Dl
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k Þ
0:5 [8]. The derivation of the transfer function

starts from calculating the trial energy gap DT , which originates
from the electrons at the Fermi level only. In this particular situa-

tion the DT is directly proportional to the interaction term after the
vanishing of Ek. Then the transfer function, i.e. uTl v

T
l as a function of

electron energy is interpreted, which will be substituted into

Dcorrected
k ¼ �P

kl
VkluTl v

T
l to correct the energy gap. However, the

scale factor approach is valid if it satisfies the condition that the
Debye energy ZuD[D. Otherwise, the BCS occupational fraction
will not drop sharply to zero when the electron energy increases
[8].

We apply the scale factor approach to calculate the Tc of SWCNTs
arranged in the form of a hexagonal array. Each SWCNT can
be imagined as a rolled-up graphene sheet forming the shape of a
tube. As a result, the phonon wavefunction in a SWCNT
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y ;ucircular
z Þ becomes related to graphene
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y Þ and linear carbon nanochains cðulinear
x Þ of the

same bond lengths. We consider two types of repeating units in
graphene as illustrated in Fig. 1. The effective spring constants

ðKplanar
x ;Kplanar

y Þ of the upper and lower repeating units in graphene
are resolved into the x and y axis, respectively.

As the bond length of graphene is about 143 p.m., we make use
of the GGA functional [18,19] to simulate the dispersion curve and
the phonon density of states in the linear carbon chain under the
same bond distance of 143 p.m. based on the finite displacement
method in which the corresponding supercell cut-off radius is
0.5 nm [20]. In addition, the electronic DOS of the reference carbon
chain is simulated by the GGA functional in the Dmol3 package [21].
The lateral chain-to-chain separation between the isolated carbon
chains is 1340 p.m. By comparing the linear repeating unit made by
the four nearest carbon atoms along the reference linear carbon
chain with the known dimensionless spring constant Klinear

x , the
vibrational frequency of the graphene is interpretable after
computing the ratio of the resultant spring constant of the gra-
phene relative to the reference chain using the classical mass-

spring formula of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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[12]. In other words, the

Fig. 1. Illustration of the structure of graphene. Two types of repeating units of gra-
phene are shown in thicker lines.
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