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The origin of a large elastic stress within an interface between martensitic variants (twins) within a finite
strain phase field approach has been determined. Notably, for a sharp interface this stress is absent. Three
different constitutive relations for the transformation stretch tensor versus order parameters have been
considered: a linear combination of the Bain tensors (kinematic model-I, KM-I), an exponential-
logarithmic combination (KM-II) of the Bain tensors, and a stretch tensor corresponding to simple
shear (KM-III). An analytical finite-strain solution has been found for an infinite sample for tetragonal
martensite under plane stress condition. In particular, explicit expression for the stresses have been
obtained. The maximum interfacial stress for KM-II is more than twice that which corresponds to KM-I.
Stresses are absent for KM-III, but it is unclear how to generalize this model for multivariant martensitic
transformation. An approximate analytical solution for a finite sample has been found as well. It shows
good correspondence with numerical results obtained using the finite element method. The obtain re-
sults are important for developing phase field approaches for multivariant martensitic transformations
coupled to mechanics, especially at the nanoscale.

© 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Interfacial stresses. Interfacial stresses play an important role in
the formation of the nanostructures, causing martensitic phase
transformations (PTs) in the nanowires [1,2], and influencing the
nucleation condition and evolution in the multivariant martensitic
microstructures [3,4]. Interfacial stresses can also reduce the acti-
vation energy for intermediate melt nucleation within solid-solid
interface by more than an order of magnitude [5]. Interfaces may
have a complex internal structure, including the intermediate
phases [6—9]. They may appear as an intermediate state during PTs,
e.g., solid-solid PT via intermediate melting [10—15]. Interfacial
stresses have been determined for external surfaces [1] and solid-
melt interfaces [ 16—18] using atomistic simulations.

It is well-known [19] that each material surface is subjected to
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biaxial interface stresses. For phases that do not support deviatoric
stresses at the equilibrium (liquids and gases), the interfacial force
per unit length @ in both directions is equal to the surface energy 1.
For interfaces in solids, or for solid-liquid and solid-gas interfaces,
the magnitude of the surface stresses is determined by the Shut-
tleworth equation [20] @ = vy + 8y/de; = Gst + Ty, Where ¢ is the
mean interface strain. Thus, interfacial stress consists of two parts:
the tensile structural stress, @s;, which is the same as for a liquid-gas
interface, and another, 5, which is caused by elastic deformation of
an interface and which may be tensile or compressive.

Within the sharp interface approach, the constitutive equations
and balance laws for elastic interfaces were derived in
Refs. [20—27]. The challenges are (a) in finding the material pa-
rameters and (b) in the concern for whether the resultant interfa-
cial stresses can be formalized through simple constitutive
equations due to strongly heterogeneous interfacial fields like
elastic moduli, transformation strains, and total strains across the
interface.

Phase field approach. The phase field approach, which for the
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conserved order parameters is also known as the Ginzburg-Landau
approach, is broadly applied for studying the microstructure evo-
lution during various first-order PTs. The most relevant to the
current paper are works on modeling austenite - multivariant
martensite and twinned microstructure evolution in crystalline
solids [4,28—41]. We also mention works on transformations in
liquids [42] and melting/solidification [43—45], in which interfacial
stresses have been included. In the phase field models, the interface
has a finite width, and its structure (i.e., distribution of all fields
within an interface) is resolved. Interfacial stresses o (here, force
per unit area at each point within the interface) with the resultant
force per unit length @ equal to the interface energy v have been
introduced in Refs. [42—44], but are not fully consistent; see the
discussion in Ref. [46]. The problem of introducing of the interfacial
stresses g5 was solved for melting [47,48] and the solid-solid
interface for small [3,46,49] and large [50,51] strains, including
cases with anisotropic interface energy [51]. The interfacial stresses
were also introduced and studied for a complex solid-melt-solid
interface [5,52], which appears during solid-solid PT via the inter-
mediate melt.

Elastic interfacial stresses o3 (with resultant force per unit

interface length Eg ) appear automatically (i.e., without extra terms
in the constitutive equations) as a result of solution of the coupled
Ginzburg-Landau and elasticity equations, due to heterogeneity of
the transformations strain and the elastic properties within inter-
face. They were found numerically for a solid-melt interface
[45,47,48], for the austenite-martensite [3] and martensite-
martensite [4,33] interfaces, as well as for a complex solid-melt-
solid interface [5,52,53]. In contrast, the theory in Ref. [54] in-
troduces the explicit dependence of the gradient energy on the
interfacial strain. This results in the additional interfacial stresses
that depend on the gradient of the order parameter. In the sharp
interface limit, this theory reduces to the theory in Ref. [23], in
which interfacial energy depends on the interfacial strain. The
theory in Ref. [54] does not include structural interfacial stresses
as. Since the boundary-value problem for stresses was not solved
in Ref. [54], elastic stresses due to heterogeneity of material pa-
rameters within the interface were not discussed. At the same time,
itis argued in Ref. [50] that it is not evident that such an additional
dependence of the gradient energy on the interfacial strain is
necessary, because stresses due to heterogeneous distribution of
material parameters across an interface (neglected in Ref. [54]) may
be large, exceeding what one wants to introduce. This was shown
for the solid-melt interface in Refs. [47,48]. In this case, volumetric
transformation strain (more precisely, the biaxial part of the
transformation strain along the interface) determines the elastic
interfacial stresses [47,48]. They appeared to be too large and un-
realistic (they are significantly larger than stresses determined
using molecular dynamic simulations in Refs. [16,17]). These
stresses artificially suppress melting, and in order to restore con-
sistency with experimental data on the size-dependence of the
melting temperature for Al nanoparticles, various methods of their
relaxation (in particular, introducing an additional equation for
stress relaxation) have been proposed in Refs. [47,48]. This led to
the conclusion that for melting it is not necessary to introduce
additional elastic interface stresses. However, there have been only
limited attempts to understand which parameters affect elastic
interfacial stresses for a solid-solid interface and how they can be
controlled; see, e.g., [4,55,56].

In the current paper, we have found a complete analytical so-
lution for the simplest case of a solid-solid interface between two
martensitic variants, or a twin interface. Since transformation strain
for twinning is a simple shear, internal stresses do not appear
within the sharp interface between martensitic variants or twins. It

is intuitively expected that they should not appear within a phase
field approach also. However, we will see that this is not the case.

Multivariant martensitic PTs. Microstructure evolution during
martensitic PTs plays the central role in determining mechanical,
electrical, and other properties in a broad range of materials, e.g.
shape memory alloys, ferroelectric materials, and multiferroic
materials. The microstructures in such materials usually consist of
mixture of austenite, A, and N martensitic variants, M;, where
i=1,2,...,N; see, e.g., [57,58]. Some of the martensitic variants can
form twin boundaries that are coherent interfaces. Across a twin
boundary, one variant can be obtained by simple shear deformation
of the other. In experiments, one rarely sees interfaces between A
and a single martensitic variant, since the stress-free lattices of A
and M; in most of the materials are not geometrically compatible
(in the sense of Hadamard's compatibility) to form a coherent
stress-free interface. The system prefers to form microstructures
consisting of A separated from twinned martensite by a plane
interface, which minimizes the elastic energy of the system [57,58].

Various continuum theories [57—63] have been used to study
twinned microstructures within sharp interface approaches. On the
other hand, various aspects of the phase field approach to
martensitic PTs and twinning have been developed and used for
simulations in various papers; see e.g., [4,28—41]. The main concept
is related to the order parameters n that describe material in-
stabilities during PTs from A to M; in a continuous way.

The necessary conditions for the Landau (local) potential and
transformation strain, which are functions of the order parameters,
have been formulated and utilized in Refs. [30,33,64—66] for small
strains and in Refs. [30,67] for large strains. They, in particular,
introduce the conditions that the thermodynamically equilibrium
values of the order parameters are fixed (i.e., 0 or 1) for A and M; for
any stress and temperature and that the crystal lattice instability
conditions should be included in the theory. This results in a much
more complex expression for the thermodynamic potential and
transformation strain tensor as compared to those used in the other
theories [34—39]. Large strain formulation for multivariant
martensitic PTs were developed in Refs. [30—32,38,39,67]. Three
different kinematic assumptions are currently used in various
papers.

(a) Kinematic model-I (KM-1): Symmetric right transformational
stretch U; is considered as a linear combination of the Bain
stretch tensors Uy; of all the martensitic variants multiplied
with a corresponding nonlinear interpolation function of the
order parameters [30,67]. Such an expression satisfies all of
the conditions formulated in Refs. [30,67]. However, as it was
shown in Refs. [38,39], it does not conserve the determinant
of the transformation stretch (i.e., volumetric transformation
strain) within the transition region between the variants
where 0<7n<1. In particular, this means that while all
martensitic variants have the same specific volume, the
transformation process M;<M; is not isochoric. This
requirement is not a mandatory one, because, for disloca-
tional slip, for example, there is a volume change along the
shearing process between two stable atomic configurations
[68]. In fact, defect cores in dislocations and twin boundaries
may induce change in volume (see Chapter 7 and 8 of [69]
and the references therein). However, the requirement for
volume conservation sounds reasonable, at least, for the
simplest model; it is good to have such a model. If volume
change is observed during a transformation process between
two martensitic variants, in principle, it could be included as
a correction to the isochoric model.
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