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a b s t r a c t

Transition state theory is a fundamental approach for temporal coarse-graining. It estimates the reaction
rate for a transition processes by quantifying the activation free energy and attempt frequency for the
unit process. To calculate the transition rate of a gliding dislocation, the attempt frequency is often
obtained from line tension estimates of dislocation vibrations, a highly simplified model of dislocation
behavior. This work revisits the calculation of attempt frequency for a dislocation bypassing an obstacle,
in this case a self-interstitial atom (SIA) loop. First, a direct calculation of the vibrational characteristics of
a finite pinned dislocation segment is compared to line tension estimates before moving to the more
complex case of dislocation-obstacle bypass. The entropic factor associated with the attempt frequency is
calculated for a finite dislocation segment and for an infinite glide dislocation interacting with an SIA
loop. It is found to be dislocation length independent for three cases of dislocation-self interstitial atom
(SIA) loop interactions.

Published by Elsevier Ltd on behalf of Acta Materialia Inc.

1. Introduction

Dislocations are carriers of plastic deformation whose motion
fundamentally influences material behavior. The collective effects
of dislocation-mediated unit processes are described and homog-
enized in higher length and time scale models such as crystal
plasticity in both athermal, stress driven and thermally activated
regimes. In a strained crystal, dislocations migrate to create per-
manent deformation, thereby accommodating the applied strain
and dissipating energy in the process. Dislocation multiplication
and glide necessarily leads to defect interactions which cause strain
hardening. Adopting and energy based viewpoint, the interactions
between dislocation and obstacles affect the energy required for
bypass by virtue of elastic fields (both local and non-local) that
interact with the dislocation as well as thermal fluctuations. The
rate at which bypass processes occur is ultimately a function of the
internal material stress state, temperature, and obstacle configu-
ration. Thermally activated bypass can be one of the key rate con-
trolling processes determining the primary creep response and

transition from primary to secondary creep in metals subjected to
low stress (with respect to the athermal bypass stress) and mod-
erate temperatures. Such is the case for example of high chromium
steels which are readily used in thermal powerplants and are also
candidate cladding materials for nuclear applications. A series of
experimental studies suggest that in the aforementioned regimes,
dislocation obstacle bypass (i.e. remobilization of dislocation lines),
potentially mediated by climb, plays a key role in controlling creep
in non-irradiated metals [1]. The scenario becomes more complex
in the case of irradiated metals. In such case the interaction be-
tween glide loops and self-interstitial atom (SIA) cluster condensed
in the form of loops is known to largely contribute to the materials
strength. A connection with the effective strain rate sensitivity of
those materials remains to be established.

To mathematically model such complex processes, numerous
constitutive models have been proposed starting with the works of
Kocks [2,3], and Mecking and Kocks [4]. More complex constitutive
models resolving the fine scale implications of thermal activation in
the form of thermally-assisted dislocation glide have been pro-
posed [5e11], but even such modern models assume an attempt
frequency with little justification or include the attempt frequency
in a reference slip rate, which is also often assumed. These* Corresponding author.
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dislocation-obstacle bypass attempt frequency estimates can range
from 1010 1/s [8] to the order of the Debye frequency [11]. These
models do not consider the possible dependence of attempt fre-
quency on defect type, spacing, or any other parameter. The influ-
ence of these factors must be quantified before applying a physics-
based approach to predicting thermally activated response.

Direct estimation of dislocation-obstacle bypass attempt fre-
quency from first principles was first performed by Friedel [12],
who first derived the fundamental frequency of vibration for a
dislocation using a line tension model (approximating a dislocation
as a string with tension G). Granato et al. [13] developed a signifi-
cantly more advanced analysis for attempt frequencies for
dislocation-obstacle bypass events, deriving bounds and estimates
for attempt frequency, which are summarized in this work. The
adopted methodology of Granato et al. is revisited here, foregoing
line tension approximations and instead applying a non-singular
dislocation formulation [14] to more realistically describe disloca-
tion dynamics.

This study aims to determine the attempt frequency for a
dislocation bypassing a SIA loop using the continuum theory of
defects. To this end, the study is divided into three sections. First,
the fundamental modes of a finite dislocation segment with pinned
ends are characterized and compared to line tension predictions for
the fundamental frequency as well as the functional form of the
spectrum. Next, the attempt frequency for a finite dislocation
segment bowed against an SIA loop is determined and compared to
theoretical estimates where possible. A more realistic configuration
of an infinite dislocation bowed against an array of SIA loops is then
considered and the attempt frequency is determined. The study
concludes with discussion of the sensitivity of the numerical
calculation of attempt frequency and the possible implications on
predictions of the reaction rate.

2. Method

2.1. Summary of theoretical developments

The Arrhenius equation was applied to the case many-body
processes in the work of Vineyard [15] by adopting a harmonic
approximation in order to extend it to solid state processes. By
considering the ratio of configurational partition functions for the
normal and activated states for an M-dimensional system and
assuming each degree of freedom can be approximated by a har-
monic oscillator, the rate of phase points crossing the saddle point
can be written as

k ¼ nae�DG=kBT ¼ n1e
DS=kBe�DH=kBT (1)

where

na ¼ n1
YM
i¼2

�
ni
�
n0i
�
; (2)

Here, n1 is the fundamental attempt frequency, ni is the fre-
quency of the ith mode of the normal state, and n0i is the frequency of

the ith mode of the activated state. The factor
QM

i¼2ðni=n0iÞ is called

the entropic factor eDS=kB as it explicitly accounts for the entropy
change during the process.

Granato et al. [13] described a dislocation line using the
following partial differential equation

my
00 þ rðxÞFðyÞ þ bs ¼ m€y

.
c2 (3)

where prime symbols represent derivatives with respect to x, dots

represent time derivatives, y is the displacement of the dislocation
at x in the bypass direction, m is the line tension, b is the Burgers
vector magnitude, FðyÞ is the anchoring force of the defect, s is the
scalar applied stress, rðxÞ the pinning point density, the mass per
unit length is assumed to be m=c2 and c is the speed of sound in an
isotropic medium. In general, the dislocation mass depends on
elastic anisotropy and non-linearities in the dislocation core mo-
tion, but is approximated as a function of the isotropic speed of
sound for this work. In the absence of obstacles (rðxÞ ¼ 0, FðyÞ ¼ 0)
and applied stress (s ¼ 0), Equation (3) adopts the form of the
linear wave equation. At equilibrium, the dislocation takes a
configuration YðxÞ that minimizes energy about which it makes
small oscillatory perturbations, i.e.,

yðx; tÞ ¼ YðxÞ þ
X
i

ziðxÞcosðuitÞ; (4)

where YðxÞ is the mean equilibrium configuration (accounting for
the effect of bs in Equation (3)), i is the mode number, ui is an
eigenfrequency of the system and ziðxÞ represents the spatial
dependence of the small oscillations about the mean configuration.
Consequently, zðxÞwill represent shape of each mode of the pinned
dislocation. Equation (4) is substituted into Equation (3) for each
mode i, resulting in the following equation describing each mode:

z
00
i þ

�
u2
i

.
c2 � ½rðxÞ=m�f

�
zi ¼ 0 (5)

where f ¼ �ðdF=dy0Þy0¼Y0
(representing the rate of change of the

pinning force as a function of displacement in y), and the fixed ends
of the finite dislocation segment are represented in the boundary
conditions as zið�lÞ ¼ ziðlÞ ¼ 0 c t. Granato et al. [13] considered a
point defect rðxÞ ¼ dðxÞ as well as a continuously distributed
obstacle with density r. With the focus of this work on thermally
assisted of dislocation-obstacle unpinning, only the case of a single
point defect, extended periodically in x, is detailed from thework of
Granato. The configuration consists of a single finite dislocation
segment of length 2l with a point obstacle at dislocation center at
x ¼ 0. Each modal perturbation of the dislocation zðxÞ is described
by

zi ¼ A sinððui=cÞðlþ xÞÞ for � l< x<0; (6)

zi ¼ ±A sinððui=cÞðl� xÞÞ for 0< x< l: (7)

The two solutions are joined with the added conditions

lim
ε/0

zið�εÞ ¼ ziðεÞc t (8)

lim
ε/0

z0ið�εÞ � z0iðεÞ ¼ z0f =mc t (9)

For even modes zð0Þ ¼ 0 because the center of the dislocation
line is a vibrational node, and therefore the even modes are unaf-
fected by the pinning point and do not contribute to the attempt
frequency. To derive the odd modes of vibration, Equations (6) and
(7) are introduced into Equation (9), and the following transcen-
dental equation results:

tan qi ¼ �ð2m=flÞqi; (10)

where qi ¼ uil=c. When values of q for each mode in both the
relaxed and activated configurations have been obtained numeri-
cally, the attempt frequency for the dislocation-obstacle configu-
ration can be obtained by substituting these values into Equation
(2) and is then written as
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