
Full length article

A variational approach to the modelling of grooving in a
three-dimensional setting

Klaus Hackl a, *, Franz Dieter Fischer b, Jiri Svoboda c

a Lehrstuhl für Mechanik - Materialtheorie, Ruhr-Universit€at Bochum, D-44780 Bochum, Germany
b Institut für Mechanik, Montanuniversit€at Leoben, 8700 Leoben, Austria
c Institute of Physics of Materials, Academy of Sciences of the Czech Republic, 61662 Brno, Czechia

a r t i c l e i n f o

Article history:
Received 17 November 2016
Received in revised form
27 January 2017
Accepted 30 January 2017
Available online 2 February 2017

Keywords:
Surfaces
Diffusion
Thermodynamics
Kinetics
Triple junction

a b s t r a c t

We present a theory of thermal grooving, i.e. surface motion due to surface diffusion, based solely on
geometrical and energetic arguments and a variational approach involving a thermodynamic extremal
principle. The theory is derived for a fully three-dimensional setting. All interface and contact conditions
at junction lines and points of the material aggregate are derived rigorously and without ambiguity. A
finite element implementation of the model is employed. Numerical examples are presented and
compared with experimental results from the literature.

© 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

1. Introduction and motivation

Kinetics of grooving, which occurs e.g. during thermal etching of
polycrystals, has been studied by several authors since several
decades. The shape of the grain surfaces is assumed to develop by
surface diffusion driven by the gradient of surface curvature. A
typical micrograph of a thermal groove is displayed in Fig. 1.

The majority of models used in simulations are developed for a
two-dimensional setting and for a symmetric configuration with
the grain boundary normal to the initially planar surface. Pioneer-
ing papers in this field were elaborated by Mullins [1,2]. Some
decades later theMullins concept was complemented by applying a
travelling wave solution, see Refs. [3e5]. The dihedral angle in the
groove root is given by the equilibrium of interface tensions
(assumed to be equal to specific interface energies) in the grain
boundary and in the surfaces. The dihedral angle and the continuity
of the surface curvature define two contact conditions at the groove
root. Furthermore, the surface flux at the groove root must be zero
as no flux is assumed in the grain boundary. Boundary conditions at
infinity are defined naturally. The situation gets more complicated,

if the grain boundary is assumed not to be normal to the initially
plane surface. Then one must distinguish between models ac-
counting for a mobile or immobile grain boundary. The problem of
interaction of free surfaces with a mobile grain boundary has been
treated numerically by Svoboda and Riedel [6] for dragged pores
and later by Zhang and Wong [7] for grooving. In both papers it is
assumed that the tangent to the grain boundary at the triple
junction halves the dihedral angle and that the curvature and
surface flux are continuous there. The problem with an immobile
grain boundary opens the question of values of contact angles at
triple junctions. If the grain boundary halves the dihedral angle,
there is one redundant contact condition at the triple junction.
Further models for a two-dimensional setting shall be mentioned
for surface and interface diffusion [7,8], grooves at singular surfaces
and grain boundary sliding [9,10], grooves in thin filaments [11] and
films [12]. Of particular interest have been two-dimensional
models for the interaction of grooves with liquids [13,14].

The current solution concept is based on the Thermodynamic
Extremal Principle, see Refs. [15e17] particularly for diffusive pro-
cesses, for a three-dimensional setting. This variational study in-
corporates the whole system geometry and all participating energy
terms and results in kinetic equations and proper contact condi-
tions including one condition for contact angles. This solution
procedure has already proven to be successful with respect to a
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two-dimensional setting or grooving [18,19] and grain growth and
coarsening [20], allowing also for a limited triple junction mobility,
see the contributions by Streitenberger and Z€ollner [21,22]. How-
ever, one must keep in mind that modelling and simulation of
grooving in a three-dimensional setting seem to be a new chal-
lenge. Only few papers dealt with this topic up to now. Here a series
of papers by Gottstein and coauthors [23e28] has to be mentioned.
The relevance of these contributions is based on the understanding
of the triple line effects and measuring the triple line energy by
using thermodynamically established relations for line energies.
Furthermore, some simplified models describe the groove by a
radially symmetric shape [5] or by a tetrahedron-like shape, see the
recent papers [29,30]. It should be mentioned that also atomistic
methods can be applied to model zones near triple junctions and
consequently also near a quadruple junction, see the very recent
paper [31] engaging the embedded-atom method. From the point
of view of a rigorous three-dimensional treatment the work by
Barret et al. [32], which appeared in the mathematical literature,
should be mentioned. These authors already engaged a variational
concept minimizing the Gibbs energy resulting in a three-
dimensional finite element formulation of the groove. However,
they assumed kinetic laws and contact conditions as given re-
lations. We consider this as motivation to present a complete
thermodynamically based three-dimensional model of grooving
accounting for the following energy terms.

(i) the specific surface energy,
(ii) the specific grain boundary energy,
(iii) the line energy of the groove root,
(iv) the line energy of triple junction of three grain boundaries,

and for the following processes.

(i) surface diffusion,
(ii) diffusion along the groove root.

Kinetic laws and contact conditions are derived by the TEP from
a general formulation of the problem. In addition, a concept for the
numerical treatment of the kinetic laws respecting the contact
conditions is provided.

2. Problem description

As system we consider the upper half of a thin polycrystalline
layer with planar grain boundaries normal to the layer denoted as
hi. The grain boundaries meet in three grain boundary triple
junctions denoted as Si (-lines). The surfaces of individual grains
are denoted as ui. The geometrical boundaries of these surfaces are
denoted by vui. They meet each other and with grain boundaries in
triple junctions denoted as Gi (-lines). The end-points of these lines
are denoted by vGi. The Gi- and Si-lines meet in quadruple junc-
tions Pi. A section of the system displaying a junction of three grains
is depicted in Fig. 2.

2.1. Geometry and kinematics

We consider open surfaces ui with the normal vectors ni, which
intersect along triple lines Gi with tangent vectors tGi, i.e.
Gi ¼ uj∩uk for appropriate j; k, see Fig. 2. Here we assume for
simplicity that Gi lies in a plane, which may be the grain boundary,
denoted as hi, between two grains with the surfaces uj;uk. Within
this plane Gi possesses an outward normal vector nGi. Moreover
mGij is the unit vector at Gi in tangential direction of uj given by
mGij ¼ ±tGi � nj, where the sign is chosen in such a way that mGij
points away from Gi. Three (surface) triple lines and one (straight)
internal triple line Si meet at a quadruple point Pi, i.e.
Pi ¼ Si∩Gj∩Gk∩Gl for appropriate j; k; l. The triple line Si possesses
an outward tangent vector tSi. For later reference, let us denote the
set of all surfaces by S, the set of all triple lines by T, and the set of
all quadruple points by ℚ. We denote the set of all surfaces uj2S

adjacent to a triple line Gi by

AGi ¼
�
uj2S

��Gi3vuj
�
: (1)

In the same manner let us denote the set of all triple lines Gj2T

adjacent to a quadruple point Pi by

APi ¼
�
Gj2T

��Pi3vGj
�
: (2)

The velocity vector of amaterial point in the surface ui has a normal
component vn;i measured as positive in direction of ni.

Let us assume now that Gi moves within the plane hi with ve-
locity vGn;i, measured as positive in direction of nGi, see Fig. 3. The
compatibility of an adjacent surface uj2AGi at Gi enforces

vGn;i ¼
vn;j

sin aij
; (3)

where aij denotes the angle between nGi and nj, see Fig. 3. A pos-
itive motion of Gi leads to a reduction of the area Aj of the adjacent
surface uj via the tangential velocity vt;j. From Fig. 3 we deduct

Fig. 1. Micrograph of thermal groove. Reproduced from Acta Mater., 58, Zhao, B.,
Verhasselt, J.Ch., Shvindlerman, L.S., Gottstein, G., Measurement of Grain Boundary
Triple Line Energy in Copper, 5646e5653, 2010, Fig. 4, with permission from Elsevier.

Fig. 2. A part of the system showing the groove geometry and geometrical elements
for three adjacent grains.
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