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a b s t r a c t

Experimental pole figures are an important input for microstructure homogenization models. In this
paper, we derive an exact analytical formulation to quantify the uncertainties in homogenized properties
due to uncertainty in the experimentally measured pole figures. The pole figures are acquired from a set
of Ti-7Al alloy samples. These samples were obtained from the same process: by compressing a beta
forged ingot at room temperature followed by annealing. The samples were taken from different regions
of the original ingot, and this created variability in the resulting pole figures. The joint multivariate
probability distributions of the computed orientation distribution function (ODF) is then found using the
method of characteristic functions based on a Gaussian model of the pole figures. Engineering properties
such as elastic modulus can be obtained by volume averaging over the ODF. We also show that uncer-
tainty in elastic properties can be analytically obtained using direct transformation of random variables
in the homogenization approach.

© 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Integrated Computational Materials Engineering (ICME) (Allison
et al. [1]) is an emerging paradigm for materials design that em-
phasizes integration of material models at multiple length scales
with engineering analysis of products and processes. Critical inputs
of these material models come from experiments, for example,
initial orientation distribution function of the polycrystalline
structure is a key input for multiscale crystal plasticity models.
However, microstructures are inherently stochastic in nature. In
other words, specimens made from the same manufacturing pro-
cess have variations in microstructure both point-to-point in one
specimen and across all specimens. One of the pillars of ICME is
uncertainty quantification (UQ) and involves development of
mathematical tools to quantify the effect of stochasticity of
microstructure on the predicted engineering properties.

Current state of the art involves the use of expensive numerical
simulations such asMonte Carlo simulations (MCS), collocation and
spectral decomposition methods to quantify the uncertainties.
Creuziger et al. [2] examined the uncertainties in the orientation
distribution function (ODF) values of a microstructure due to the

variations in the pole figure (PF) values by using Monte Carlo
Simulation (MCS). Juan et al. [3] used MCS to study effects of
sampling strategy on the determination of various characteristic
microstructure parameters such as grain size distribution and grain
topology distribution. Hiriyur et al. [4] studied an extended finite
element method (XFEM) coupled with an MCS approach to quan-
tify the uncertainties in the homogenized effective elastic proper-
ties of multiphase materials. The uncertain parameters were
assumed to be aspect ratios, spatial distribution and orientation.
They used a strain energy approach to analyze the uncertainties of
in-plane Young's modulus and Poisson's ratio. Kouchmeshky and
Zabaras [5] presented propagation of initial texture and deforma-
tion process uncertainties on the final product properties. They
used a data-driven approach to identify the joint probability dis-
tributions of random variables with Maximum Entropy Method,
and modeled the stochastic problem using a stochastic collocation
approach. Madrid et al. [6] examined the variability and sensitivity
of in-plane Young's modulus of thin nickel polycrystalline films due
to uncertainties in microstructure geometry, crystallographic
texture, and numerical values of single crystal elastic constants by
using a numerical spectral technique. Niezgoda et al. [7] computed
the variances of the microstructure properties by defining a sto-
chastic process to represent the microstructure. They marked the
sensitive regions in the convex hull generated with Principal
Component Analysis (PCA), and calculated the probability* Corresponding author.
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distributions of stiffness and yield stress in case of low,medium and
high variances.

These computational methods presented in literature involve
using a numerical algorithm for uncertainty quantification and
propagation. They represent the joint probability distributions of
uncertain variables either using interpolation functions or sam-
pling for random points. These techniques are not computationally
efficient as the problem complexity or the number of variables
increases since the number of interpolation terms or sampling
points will also increase. This is especially true for orientation
distribution functions that are discretized using finite element
nodes or spectral basis and contain large number of free parameters
whose joint distribution needs to be sampled. Another drawback is
the difficulty of satisfying design constraints (such as volume
fraction normalization) when using numerical approaches. Finally,
these methods do not take advantage of the linear transformations
involved in the conversion of pole figures to ODFs [8] that allow
analytical representations of uncertainty under certain cases. All
these disadvantages imply the necessity of developing analytical
solutions as a first step in UQ.

In this work, we develop a set of analytical formulae to quantify
uncertainty in the ODF due to variability in the measured pole
figures. This uncertainty is ‘aleatoric’ [9] and arises from variations
in texture across specimens subject to the same process. The
measurements were taken across different beta forged Ti-Al sam-
ples that were subject to the same compression and annealing
process. The measurements were also taken from different regions
of these samples. The probability distributions of the PFs were
computed from these scans and were found to be roughly Gaussian
in nature. Then, the propagation of uncertainties on the ODFs are
computed using an analytical formulation. Note that pole figure
inversion is non-unique and several numerical methods have been
developed for this purpose dating back to Bunge (1969) [10]. These
different methods lead to a band of solutions for the true ODF. In
the UQ community, the uncertainty that arises from lack of an exact
solution is classified as ‘epistemic’ uncertainty [9], and such an
uncertainty is not considered in this work. In this context, Randle
and Engler [11] classified various inversionmethods to categories of
‘harmonic’ or ‘direct’ methods and compared the methods against
each other. While all methods were found to yield reproducible
results, it was suggested to staywith a givenmethod during a series
of experiments. In this work, we stay within the least squares
minimization method of Barton et al. [8] to compute the ODF. The
secondary uncertainty that comes from the X-ray instrument itself
is also not considered. Once the uncertainty in the ODF is quanti-
fied, we present an approach to identify the probability distribu-
tions of the material properties that are derived from the ODF such
as Young's modulus and shear modulus using the random variable
transformationmethod. The organization of this paper is as follows.
Section 2 discusses the problem statement. In Section 3, the
mathematical methods are described. Results and conclusions are
addressed in Sections 4 and 5 respectively.

2. Mathematical background

The complete orientation space of a polycrystal can be reduced
to a smaller subset, called the fundamental region, as a conse-
quence of crystal symmetries. Within the fundamental region, each
crystal orientation is represented uniquely by a coordinate r, the
parametrization for the rotation (eg. Euler angles, Rodrigues vector
etc.). The ODF, represented byAðrÞ, describes the volume density of
crystals of orientation r. The ODF representation in the Rodrigues
fundamental region for Titanium (hcp) is shown in Fig. 1 and the
locations of the k independent nodes are shown. The volume
density of any other node in the fundamental region can be

obtained from these independent nodes through symmetry. The
ODF also satisfies a normalization constraint,

R
Adv ¼ 1, with the

integral computed over the fundamental region. The normalization
constraint can be written as a linear equation of the formPk

i¼1qiAi ¼ 1 (see Appendix A), with Ai denoting the ODF value at
node i.

The experimentally obtained pole figure for a particular
diffraction plane unit normal h contains the pole density function
P(h,yi) measured at locations y1,y2,…,yq on a unit sphere. The value
of P(h,yi) at location yi can be computed from the ODF (A) using a
single linear equation based on the algorithm of Barton et al. [8]:

Pðh; yiÞ ¼
Xk
j¼1

MijAj (1)

where Mij are the values from a known system matrix M. One such
equation can be written for each of the m points in a pole figure.
This set of equations can be combined with a similar set of equa-
tions for n other pole figures with different diffraction normals h.
This leads to a global system of equations P ¼ MA. Here, P is a
column vector of sizem� n,M is a matrix of size (mn)� (k) and the
ODF A is a column vector of size k containing the volume densities
of k independent nodes. In order to account for the normalization

constraint
Pk

i¼1qiAi ¼ 1, the overall system P¼MA is adjusted such

that Mij ¼ Mij � Mikqj
qk

for j ¼ 1, …,k�1 and Pi ¼ Pi � Mik
qk
.

The system of equations is overedetermined (ie. more pole
figure data as compared to the unknown ODF values) and direct
inversion is not possible. Instead following Barton et al. [8], the ODF
is retrieved from the experimental pole figures using least squares
minimization as follows:

A ¼ CP (2)

where the coefficient matrix, C ¼ ðMTMÞ�1MT is the
pseudoeinverse.

If the orientation-dependent property for single crystals, c(r),
are known, any polycrystal property can be expressed as an ex-
pected value, or average, over the ODF as follows:

<c> ¼
Z

cðrÞAðrÞdv ; (3)

Fig. 1. ODF representation in the Rodrigues fundamental region for hexagonal crystal
symmetry showing the location of the k ¼ 50 independent nodes of the ODF in red
color. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

P. Acar, V. Sundararaghavan / Acta Materialia 124 (2017) 100e108 101



Download English Version:

https://daneshyari.com/en/article/5436430

Download Persian Version:

https://daneshyari.com/article/5436430

Daneshyari.com

https://daneshyari.com/en/article/5436430
https://daneshyari.com/article/5436430
https://daneshyari.com

