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Based on our experience gained from uncertainty quantification (UQ) of traditional manufacturing, this paper
discusses UQ for additive manufacturing with a focus on the prediction of material properties. Applications of
UQ methods in traditional manufacturing are briefly summarized first. Based on that, we investigate how the
state of the art UQ techniques can be applied to AM process to quantify the uncertainty in thematerial properties
due to various sources of uncertainty. The UQ of ultimate tensile strength of a structure obtained from laser
sintering of nanoparticles is used as an example to illustrate the proposed UQ framework.

© 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Keywords:
Additive manufacturing
Uncertainty quantification
Material properties
Metal
Laser sintering

1. Introduction

Additive manufacturing has been successfully applied to the
manufacturing of metal components with complicated geometries
(e.g., engine rotor blades) [1]. It has a huge market potential of several
billion dollars [2]. Current AM techniques for metal component
manufacturing include stereolithography (SLA) [3], fused deposition
modeling (FDM) [4], laminated object manufacturing (LOM) [5], selec-
tive laser sintering (SLS) [6], selective laser melting (SLM) [7], direct
metal deposition (DMD) [8], laser metal deposition (LMD) [9], direct
metal laser melting (DMLM) [10], and others. The most widely used
ones are powder bed fusion-based AM processes (i.e., SLS, SLM, LMD,
or DMLM), which are also the focus of this paper.

In the laser powder bed fusion process, the powders are delivered to
the powder bed layer by layer and the powders are melted by the laser
beam according to laser paths defined according to the 3D computer
aided design (CAD) model. Due to various sources of uncertainty in-
volved in the processes from powder bed forming to melting and solid-
ification, variability is present in the properties of the manufactured
metal components. As a result, it is hard to repeat the manufacturing
of a high quality product and a trial-and-error approach needs to be
employed to get a productwith high quality. This becomes amajor hur-
dle for the wide application of metal-based AM techniques. The funda-
mental reason for this limitation is that the variability in the
manufacturing processes has not been properly captured.

A key to resolve the aforementioned problem is to use uncertainty
quantification (UQ) techniques during the AM process. Despite the
fact that UQ techniques have been studied for traditionalmanufacturing
processes, their application in AMprocess is still at its early stage. Only a
few examples have been reported in the literatures on UQ in AM [11–
13]. In addition, currently reported UQ methods in AM are mainly
based on experiments and are performed at the process level. This will
result in excessive material wastage, increase product development
cost, and delay the product development process [14]. A generic UQ
framework built upon a good understanding of the fundamental princi-
ples of the AM process will significantly benefit the widespread use of
the AM techniques. The understanding of the material properties
resulting from additive manufacturing and the associated UQ is thus
an important need in fully realizing the promise of AM.

This paper focuses on leveraging our experience in UQ of traditional
manufacturing toUQ in the prediction ofmaterial properties duringAM.
Two examples of the UQ of traditional manufacturing process are pre-
sented first. Based on that, we discuss the challenges related to the UQ
of the AM process. Solutions of these challengeswill then be introduced
through the employment of the state of the art UQ techniques. Finally, a
laser sinteringmodel of iron nanoparticles,which is an important exam-
ple of a micro AM process, is used to illustrate the application of UQ
techniques in AM of metal products.

The remainder of the paper is organized as follows. Section 2 pro-
vides a brief summary of our experience with UQ in traditional
manufacturing. Section 3 discusses the UQ of material properties pre-
diction in the AM process. A laser sintering example of nano-particles
is given in Section 4 to demonstrate some of the discussed UQ tech-
niques, and concluding remarks are given in Section 5.
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2. UQ in traditional manufacturing

Recent efforts in UQ of traditionalmanufacturing have been pursued
along two interesting directions: (i) multi-scale modeling that links the
manufacturing process parameters to themicrostructure and tomacro-
scale properties, and (ii) macro-scale linkage of multiple manufacturing
processes. The first direction is explained in details as below.

Cai and Mahadevan [15] used multi-scale modeling to investigate
the effect of uncertainty in material initial condition andmanufacturing
process parameters on the microstructure. The uncertainty in the mi-
crostructure is then propagated to the uncertainty in the macro-level
material properties as shown in Fig. 1.

As shown in Fig. 1 (a), a two-dimensional dual phase polycrystalline
microstructure is simulated based on the initial condition of the grain
cores (generated using stratified MCS) and the manufacturing environ-
ment. Then a homogenization method is applied to predict macro-level
properties. The cooling schedule of the alloy is used to illustrate the
methodology, and Young's modulus is the prediction quantity of inter-
est. Evenwith a given cooling schedule, spatial variation of temperature
affects the microstructure and properties as indicated in Fig. 1 (a); this
variability is also incorporated through a random field representation
of the temperature. Fig. 1 (b) shows the variability of Young's modulus
obtained under different coefficients of variation of the temperature,
which is presented as spatially varying random field (RF). It shows
that the variation in the Young's modulus can be reduced significantly
by reducing the uncertainty in the manufacturing process parameter
(temperature). The UQ methodology uses a Kriging surrogate model
[16] for computational efficiency, since a large number of runs of the
multi-scale analysis are required corresponding to multiple realizations
of the uncertain variables (i.e. uncertainty in the initial condition of the
grain cores and temperature of manufacturing). The relative contribu-
tions of both aleatory and epistemic sources to the overall bulk property
uncertainty are quantified using a global sensitivity analysis (GSA) ap-
proach (discussed in Section 3). The GSAmethod and surrogate model-
ing method is employed to identify the most important uncertainty
sources and reduce the computational effort required during the UQ
process. The sensitivity analysis also provides guidance for effective
quality control of the manufacturing process in order to meet the de-
sired uncertainty bounds in the bulk property estimates.

The above discussed research is about UQof only one processmodel.
Manufacturing of any product requiresmultiple processes and sub-pro-
cesses, and UQ for such a network of processes is not straightforward.
The uncertainty sources occur at different stages of the manufacturing

process and do not combine in a straightforwardmanner; the combina-
tion could be linear, nonlinear, iterative, or nested. Nannapnaneni et al.
[17] found a BayesianNetwork (BN) approach to be advantageous in the
uncertainty aggregation of such a complicated manufacturing network.
The Bayesian network approach can also incorporate GSA and surrogate
modeling techniques to reduce both the number of variables and the
computational cost.

The above discussions briefly summarize successful applications of
the UQ techniques to traditional manufacturing process. Next, we will
discuss the UQ of material properties prediction during the AM process.

3. Uncertainty quantification during additive manufacturing

In this section, we first briefly introduce the models in the AM pro-
cess. Following that, we will discuss the UQ of AM process.

3.1. AM process models

During the AM process, the models used to predict the process per-
formance can be roughly classified into five models as shown in Fig. 2.
The outputs of the heat source model and powder bed model will act
as inputs of the melting pool model. The output of the melting model
will be used as input of the solidification model to study the evolution
of the microstructure during the AM process. The solidification model
and the melting pool model will provide information for the residual
stress analysis model and other macro-level analysis models [18]. The
analysis and simulation methods used in each model are also given in
Fig. 2. Since there are connections between different simulationmodels,
the uncertainty at lower levels such as that in the powder bed model
will propagate to the uncertainty in the solidification model, which
will then be presented in the residual stress model. This brings more
challenges to the UQ of AM process than in traditional manufacturing.

In the subsequent sections, we will first identify various sources of
uncertainty in the AM process and then discuss the challenges in UQ
of AM and provide potential solutions.

3.2. Identification of uncertainty sources

Similar to the UQ of traditional manufacturing, the uncertainty
sources in the AM process can be classified into two categories: aleatory
uncertainty and epistemic uncertainty [19]. Aleatory uncertainty refers to
natural variability, which is irreducible. Epistemic uncertainty refers to
the uncertainty due to lack of knowledge regarding model inputs and

Fig. 1. UQ of Young's modulus for two-phase polycrystalline alloy [15].
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