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a b s t r a c t

A theory on the diffraction of an elliptic Bethe–Bouwkamp aperture illuminated by a polarized plane-wave
is established. The fictitious surface magnetic densities of charges and currents are rigorously represented by
rewriting Bouwkamp’s partial differential equations into vectorial expressions, and hence the electromagnetic
field is described in a compact form. The polarization behaviors of both near-field diffraction and far-field
radiation with respect to the incident light field are discussed. Novel phenomena owing to the geometry of
elliptic aperture are demonstrated.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

As a fundamental property of light, diffraction has been studied for
centuries ever since Huygens–Fresnel principle was established, which
concludes that any primary wavefront can be viewed as the source
of secondary disturbance. However, simple rules sometimes lead to
quantities of confusing phenomenon, and just like a delicate gift from
nature, diffraction problems always attract considerable attentions of
scientists.

Analytical diffraction theories are early developed from the famous
Helmholtz–Kirchhoff theorem [1]. The Kirchhoff’s diffraction integral
provides great applicability in macroscopic situations, but its boundary
conditions are mathematically incorrect and inadequate for a smaller
aperture when take into account the agreement with Maxwell’s equa-
tions. Kottler’s modification [2] introduces fictitious line charges at the
edge represented by the contour integrals, which satisfies Maxwell’s
equations but still not rigorous to reveal the field in the vicinity
of the aperture. Rigorous solutions (‘‘wave equation plus boundary
conditions’’ [3]), for diffraction problems are so difficult owing to the
abstruse mathematics that few shapes of small aperture (≪ 𝜆) can
be properly dealt with. No such rigorous solutions are found until
Sommerfeld’s work [4] of a perfectly conducting semi-infinite screen
in 1896. For circular disk or aperture, Bethe [5] revealed the diffraction
of that case with his far-field superposition of dipoles which is a
useful approximation for radiation problems. Bouwkamp [6] derived
the correct solution of Bethe’s near-field formulas and therefore Bethe–
Bouwkamp (BB) model is proposed.
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Diffraction problems of more complicated geometry are usually
numerically simulated with various methods, e.g. multiple multipole
(MMP) [7], finite difference time domain (FDTD) [8], and etc. [9,10].
Although numerical approaches are always of good flexibility for spe-
cific situations, their unavoidable disadvantage of poor phenomenal
explanation limits their preferability when physical insight is required.
Because the structure of near-field probe essentially resembles the
situation of BB model [11], the description of near-field problems is
undoubtedly one of the most straightforward applications of BB model,
and plenty of amazing phenomenon, e.g., light-matter interaction [12]
are to be theoretically clarified.

BB model has been recently confirmed [13] and compared [14,15]
in experiments, some even involving oversize circular apertures (radius
above 𝜆∕5). The polarization of a light beam diffracted by a BB aperture
(or perhaps larger as subwavelength aperture) is promising for some
novel applications, such as magnetic field analyzing [16] and field
mapping [17]. Intensive efforts have been made for further compre-
hension and application of light with novel polarization, e.g. cylindri-
cal vector beam, [18,19] which shows great potential in microscopic
super resolution [20–22], optical communication [23], optical data
storage [24], 3D nanofabrication [25], soliton diode [26] etc. As
a matter of fact, arbitrarily spatial-variant vector beams have been
designed and generated by devices like spatial light modulator [27],
interferometer [28], and concepts as Poincaré sphere [29], or even
the curl of polarization [30]. Meanwhile, near-field probes with novel-
shaped apexes, elliptic [31] or bow tie-like [32], are intensively studied
both theoretically and experimentally. Above all, a rigorous theory on
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the polarization behavior by a BB aperture with novel shapes and even
with novel incident field is of sufficient necessity.

The purpose of this letter is to reveal the polarization behavior of an
elliptic BB aperture with plane-wave incidence by giving the rigorous
solutions of fictitious surface magnetic densities, near-field diffraction,
and far-field radiation, which Bethe [5] has claimed a possible extension
of his model. Both scalar [33] and vectorial [34] theories are recently
proposed, the former based on Fourier transform while the latter deriv-
ing the field on the aperture with abundant rigorous results, to the best
of our knowledge. Our vectorial results express near-field diffraction and
far-field radiation in more easy-using formulas, where the polarization
behaviors are demonstrated and explained. We find that scaling and ro-
tation are applied into the diffracted electromagnetic field comparing to
the incident one, with near-field electric polarization tilting towards the
minor axis of the elliptic aperture. Furthermore, unexpected directions
of the two dipoles in far-field radiation are derived and clarified, with
potential applications for far-field description.

2. Theory

2.1. Backgrounds and settings

The theory reveals the polarization behavior of diffraction by an
elliptic BB aperture located on a perfectly conducting screen (vanishing
thickness small enough to be neglected), with whose size sufficiently
small compared to the incident wavelength.

Right-handed rectangular coordinates is used to describe the model
because of plane-wave incidence, while in terms of linear scaling (cf.
Appendix) other coordinates are probably not as convenient as this one.
The metallic (or perfectly conducting) screen 𝑆 and the elliptic aperture
𝐴 is located on the plane 𝑧 = 0, on which 𝐴 is treated as the ellipse center
at the origin of the coordinate with 𝑎 its semi-major axis and 0 ≤ 𝜖 < 1
its eccentricity.

A group of orthogonal basis as
(

p, s,𝜿𝑖) is created by rotating the
three axes of this coordinates as
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where 𝜿𝑖 is viewed as the unit vector of the incident wave vector, and
the other two as the unit vectors of P light and S light respectively. 𝜃𝑖
is made positive and light transmits from the left-hand side i.e. 𝑧 < 0 to
the right. Then the electromagnetic field, superscript 𝑖 for ‘‘incident’’, as
{

E 𝑖 = (cos 𝛼p + sin 𝛼s) 𝑒𝑖𝑘(𝜿𝑖⋅𝝆)
√

𝜇∕𝜀H 𝑖 = (− sin 𝛼p + cos 𝛼s) 𝑒𝑖𝑘(𝜿𝑖⋅𝝆)
(2)

is established, with 𝝆 = 𝑥e𝑥 + 𝑦e𝑦 + 𝑧e𝑧 the spatial displacement and
𝑒𝑖𝑘(𝜿𝑖⋅𝝆) the phase factor indicating an unit monochromatic plane wave.

Boundary conditions of BB model is specified [3] as
{

𝐸𝑛 = 𝐸𝑖
𝑛, 𝜕𝐸𝑡∕𝜕𝑛 = 𝜕𝐸𝑖

𝑡∕𝜕𝑛, 𝜕𝐻𝑛∕𝜕𝑛 = 𝜕𝐻 𝑖
𝑛∕𝜕𝑛,𝐻𝑡 = 𝐻 𝑖

𝑡 , on𝐴
𝜕𝐸𝑛∕𝜕𝑛 = 0, 𝐸𝑡 = 0,𝐻𝑛 = 0, 𝜕𝐻𝑡∕𝜕𝑛 = 0, on𝑆

(3)

where subscript 𝑛 denotes ‘‘normal’’ and 𝑡 denotes ‘‘tangential’’. Proper-
ties of odd functions are immediately found at the glance of 𝐸𝑡 and 𝐻𝑛,
while 𝐸𝑛 and 𝐻𝑡 are similar with even functions. Therefore, take 𝑧 = 0
a fictitious mirror plane, H will be symmetric and E anti symmetric.

The unperturbed field of BB model, i.e. the electromagnetic field with
𝐴 disappeared, is defined [3,5] as
{

E0∕2 =
(

n ⋅ E 𝑖)n
H0∕2 =

(

n ×H 𝑖) × n, on 𝑧 = 0, (4)

which is valid only on the left-hand side of the screen, while on the other
side E0 = H0 = 0 because of the vanishing thickness of the metallic
screen.

The rigorous form of Babinet’s principle [1] enables BB model to
introduce fictitious surface densities of magnetic charges 𝜂 and currents
K on the aperture to represent the effect of real surface densities
of electric ones on the metallic screen. Another group of boundary
conditions on the right-hand side of 𝑆 is quoted [35] as
{

E = E0∕2 + n × K
H = H0∕2 + (𝜂∕𝜇)n, (5)

which provides an approach to calculate the near-field diffraction.
Furthermore, the electromagnetic field on the right-hand side is more
concerned about, so all the following E and H will denote that field.

The vectorial potential function F in BB model is of vital importance
owing to the fact that
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where g = 𝑒𝑖𝑘𝑟∕𝑟 is a scalar Green’s function and 𝑟 denotes the distance
between the field point and the source point. In addition, according to
the continuity equation of charges and currents,
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, (7)

therefore once K is figured out, other variables can be calculated by
Eqs. (6) and (7).

Far-field calculation is based on the vectorial diffraction formu-
las [5,35], written in SI units as
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(8)

where simplifications are applied on g, and 𝜿 denotes the unit vector of
propagating direction which satisfies

𝜿 = sin 𝜃
(

cos𝜙e𝑥 + sin𝜙e𝑦
)

+ cos 𝜃e𝑧 (9)

2.2. Vectorial expressions for derivatives of potential function

Boundary conditions expressed in F is quoted as [3]
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where the wavenumber 𝑘 is neglected because 𝑘𝑎 ≪ 1, and 𝐹𝑧 = 0
on the aperture in accordance with 3rd equation of (6). F is found
complicated by substituting E 𝑖 from Eqs. (1) and (2) into Eqs. (10),
however, an easier approach based on vectorial analyze as following
will make it both straightforward for explanation and flexible for other
kinds of incident light.

On one hand, 𝐸𝑖
𝑧 is simply handled by a Taylor series of in-plane

displacement 𝝆, with E 𝑖
0 the value of E 𝑖 at the aperture center, written

as
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while on the other hand, the incident field satisfying Maxwell’s equa-
tions,
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