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a b s t r a c t

Phase-shifting interferometry (PSI) is one of the most effective techniques in optical measurement, in which
phase retrieval with high efficiency is an important procedure. In this paper, a simple non-iterative method is
proposed to extract the generalized phase shift with the four-quadrant analysis in three-frame PSI. In this method,
the possible value of the phase shift is firstly worked out with the inner product algorithm, and then a criterion is
put forward to accurately determine its principal value within the range [0, 2𝜋], based on the change relationship
of the interference wave vector in four quadrants. Thus, this method provides a possible method to solve the
uncertainty of phase shift existing in some common algorithms. Subsequently, the phase can be retrieved easily
without any other measurements. Both simulation and experimental results have fully proved the feasibility and
high accuracy of the method. Moreover, it works well on open- and closed-fringed patterns.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Phase-shifting interferometry (PSI) is an important technique widely
used in optical measurement and microscopy [1,2]. In PSI techniques,
phase shift deviation is one of the error sources, causing accuracy
reduction of phase retrieval. Therefore, improvement in accuracy of
phase shift extraction is a key issue. To address it, many generalized
methods [3–17] have been proposed to extract phase shifts from holo-
grams directly.

Phase shift extraction methods can be divided into two broad
categories: iterative and non-iterative. The iterative methods [3,4], such
as the least squares method [3], can determine the phase shift with
high accuracy. But they are very time-consuming since the procedures
are repeated many times. For this reason, non-iterative methods [5–17]
have been favored for their higher calculating speed and less compu-
tational loads. For instance, in Refs. [5,6], a kind of spatial statistical
algorithms are proposed to calculate the unknown phase shift, which
are based on the phase random condition [5]. In Ref. [7], with the
maximum and minimum values of the interference term, an accurate
algorithm for phase shift extraction in two-step PSI is proposed. Of
course, some other simple and efficient methods, such as the zero
difference algorithm [8] and the Euclidean matrix norm algorithm [9],
are also introduced to perform the phase shift extraction. Although these
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non-iterative methods possess their own merits, most of them suffer
from the sign ambiguity of the phase shift. Consequently, the phase shift
must be restricted to the range of [0, 𝜋] in advance.

In order to determine the generalized phase shift, its range is
required to be extended to the principle range (0, 2𝜋). In recent years,
some non-iterative methods [10–17] have been reported to achieve it.
In Refs. [10–12], a kind of advanced statistical method is proposed to
estimate the phase shift. In Refs. [10,11], the sign of the relative phase
shift is determined from eight cyclic phase constraint conditions, which
are consisted of three holograms. In Ref. [12], based on the spatial
frequency relationship between two interference waves, the quadrant
sign of phase shift is determined. In these methods, the intensities
of the interference waves are required to be measured separately. As
a result, the whole processing time is increased and the phase shift
exaction appears complicated. Methods reported in Refs. [13–17] are
based on other different algorithms to directly retrieve the phase. A
significant advantage of these methods is that the phase shift does not
need to be known and can take any value inside the range (0, 2𝜋).
For example, in Ref. [13], a two-step demodulation algorithm based
on the self-tuning algorithm is introduced. However, the accuracy of
phase shift decreases when the phase shift is far from 𝜋∕2. In Ref. [14],
the Gram–Schmidt (GS) orthonormalization algorithm is employed to
directly measure the phase from two phase-shifted interferograms. This
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algorithm is fast and accurate. In Ref. [15], a demodulating two-step
method based on a regularized optical flow method is presented. This
method can obtain the phase in a robust and fast way. However, it
requires the loaded computations to perform the optical flow analysis. In
addition, like the GS algorithm, the phase shift cannot take the singular
value of 𝜋. In Refs. [16,17], an asynchronous phase-shifting method
based on principal component analysis (PCA) method is proposed. This
method has some advantages. However, it requires a large number of
interferograms to obtain a reliable result.

In this letter, a simple phase shift extraction method for three-frame
PSI is proposed. It is based on both the inner product characterization
of the intensity difference and the relationship of interference wave
vector with the phase shift. In this method, only three phase-shifted
interferograms are required, and the phase shift can take any value
within the range [0, 2𝜋] including the singular value of 𝜋. Thus, the sign
ambiguity of the phase shift is avoided. After determining the phase
shifts, the phase can be retrieved easily with the phase-shifting formula.

2. Method

In order to achieve quantitative phase imaging, the three- or more-
frame PSI is usually used by virtue of its high precision and simple
operation. For a three-frame generalized PSI, the intensity distribution
of each interferogram can be given in the following form:
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Here, 𝑚 and 𝑛 denote the pixel coordinates of rows and columns of
an interferogram, respectively. 𝑂𝑚𝑛 = |
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are the complex amplitude, amplitude and phase of the object wave,
respectively. 𝑅𝑘𝑚𝑛 = |
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and 𝜙𝑟𝑚𝑛 are the
corresponding results of the 𝑘 th frame reference wave, in which the
phase shift related to the 𝑘 th frame, 𝛿𝑘, is usually assumed to be zero
when 𝑘 = 1. 𝜙𝑚𝑛 = 𝜙𝑜𝑚𝑛 − 𝜙𝑟𝑚𝑛 is the relative phase difference between
the object and reference waves and is required to be measured. The
difference between the 𝑝 th and 𝑞 th interferograms can be expressed as
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Then, the inner product operator is applied to process 𝛥𝐼𝑝𝑞 . We have
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If the fringe number in each interferogram is more than one, then
the measured phase varies more than 2𝜋 (rad) in the observed area. As
a result, the following approximation can be applied,
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Thus, Eq. (3) can be simplified as
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. From Eq. (5), it is clear shown that
𝑆𝑝𝑞 changes in cosine form with the relative phase shift 𝛥𝛿𝑝𝑞 = 𝛿𝑝 − 𝛿𝑞 ,
and there are only three unknown quantities, namely 𝛿2, 𝛿3 and 𝐶, in
three-frame PSI. According to Eq. (5), there are three quantities as
follows:
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Since 𝑆12, 𝑆13 and 𝑆23 can be determined, the values of 𝛿2 and 𝛿3
can be calculated. However, there are several solutions corresponding
to them according to the property of cosine function. As a result, the
sign uncertainty of the phase shift appears. Of course, it also exists in
some common algorithms [7–9]. In general, to settle this problem, the
phase shifts are restricted to the range of (0, 𝜋) in advance. Because the
cosine form of the phase shift is a monotonic function in this range.

In fact, as long as we can judge whether the value of the phase shift
is in the range of (0, 𝜋) or is in the range of (𝜋, 2𝜋), we can determine
its correct value within the principle range of (0, 2𝜋) on the basis of
Eq. (6). In this work, based on the analysis of the interference wave
vector, we propose a simple method to solve the above problem. The
detailed deductions are as follows.

If 𝑂,𝑅1 and 𝐴1 are the object, reference and interference total
waves, the vector relationship 𝐴1 = 𝑂 + 𝑅1 is satisfied according to the
interference principle. Fig. 1(a) shows the relationship between these
optical waves at a special position clearly, where the phase difference
between the object and reference waves, 𝜙𝑜𝑟 is equal to 𝜋∕2. In addition,
the length of each wave represents its amplitude. If a phase shift of 𝛿
is introduced to delay the phase of the reference wave, the interference
total wave changes and the phase difference is changed to be 𝜙𝑜𝑟 − 𝛿.
Figs. 1(b) and 1(c) show that 𝑅1 is changed to be 𝑅2 by the aid of the
phase shift 𝛿 within the ranges of (0, 𝜋) and (𝜋, 2𝜋), respectively. As a
result, the total wave 𝐴1 is changed to be 𝐴2 = 𝑂 + 𝑅2. From Fig. 1(b),
we can find that the amplitude of 𝐴2(or the intensity 𝐼2 = |
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2) is larger
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2) when 0 < 𝛿 < 𝜋. While from
Fig. 1(c), we found that the amplitude of 𝐴2(or the intensity 𝐼2 = |
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2) when 𝜋 < 𝛿 < 2𝜋.
In fact, we also can compare the phase-shifted interference intensities
at another special position, where the phase difference 𝜙𝑜𝑟 is equal to
3𝜋∕2. It is not difficult to find that the conclusion obtained in this case
is contrary to the above conclusion.

From the above analysis, as long as we can find the special point
and then compare the intensities of phase-shifted interferograms at this
point, the quadrant range of the phase shift can be determined. Then,
with Eq. (6), the unique value of each phase shift can be correctly
calculated. In following, we take into consideration the case of 𝜙𝑜𝑟 =
𝜋∕2.

Here, in order to determine the position of the special point, where
the phase difference is equal to 𝜋∕2, the interference term of the 1st
interferogram is required to be obtained by the filter procedure at first,
namely 𝐼1𝑚𝑛 = 𝑏𝑚𝑛 cos𝜙𝑚𝑛. Then the Hilbert transform is applied to
process 𝐼1𝑚𝑛. We have

𝐻𝑇 (𝐼1𝑚𝑛) = 𝑏𝑚𝑛 sin𝜙𝑚𝑛. (7)

Obviously, 𝐻𝑇
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)

changes in sine form with the phase. Thus, we
can easily find the special point by searching the maximum value of
𝐻𝑇

(
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)

.
It is worth noting that the wave vector analysis above cannot work

on the singular case of 𝛿 = 𝜋, since 𝐼1 = 𝑎𝑚𝑛 + 𝑏𝑚𝑛 cos (𝜋∕2 − 0) and
𝐼2 = 𝑎𝑚𝑛 + 𝑏𝑚𝑛 cos (𝜋∕2 − 𝜋) are the same in this case. To settle this
problem, we need to further compare the sizes of 𝐼1 and 𝐼2 at other
arbitrary point. If the relationship 𝐼1 = 𝐼2 is still satisfied, the phase
shift 𝛿 is equal to 2𝜋, otherwise 𝛿 = 𝜋. Thus, the phase shift can be any
value within the range [0, 2𝜋].

Once the phase shift of each frame is determined, the phase can be
retrieved with the following expression
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3. Simulation and discussion

In order to verify the effectiveness of the method proposed above,
a series of numerical simulations associated with a spherical wave-
front have been carried out. The background intensity and modulation
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