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a b s t r a c t

This paper investigates the propagation of scalar and vector Hermite–Gaussian (HG) solitons in strong nonlocal
media with exponential-decay response. The evolution equations for the parameters of the single HG beam are
obtained by variational approach and the analytical results are confirmed by numerical simulation in section 2.
Both the analytical and numerical solutions show that the critical power is increase with the increase of the order.
Section 3 numerically studied the vector HG soliton and found that, the total critical power and the initial powers
of the components should satisfy a complex relation. Because of the mutual attraction between the components,
the stability of the quasi high-order vector HG soliton is better than the corresponding single HG beam during
propagation.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Strong nonlocality can completely suppress the repulsion between
the neighbor beam ‘‘petals’’ with a 𝜋 phase flip of the multi-hump
optical beam [1,2], thus the stable strong nonlocal multi-hump optical
soliton can be formed. This characteristic of such soliton stimulates
scholars with a strong interest to study it. So far, a wide variety
of nonlocal multi-hump solitons have been studied, yielding a series
of achievements. Such as, Hermite–Gaussian solitons [3], Laguerre–
Gaussian solitons [4,5], Ince–Gaussian solitons [6], Complex-variable-
function–Gaussian solitons [7], Ring dark and antidark solitons [8],
necklace–ring solitons [2] and vortex solitons [9,10] et al., all of these
have been proven to exist in strong nonlocal media.

However, the research described above almost assumes that the non-
local response function has a Gaussian-shaped, which is purely academic
and does not naturally appear in nonlocal physics. For instance, the
response functions for lead glass [11] and (1 + 1) dimensions nematic
liquid crystal (NLC) [12], which have been verified as the strong nonlo-
cal media, are logarithm and exponential-decay, respectively. Since the
response function is not differentiable at its origin, the exact analytical
higher-order soliton can hardly be achieved [13] in such media. Usually,
we must resort to numerical solutions instead. For instance, Xu and Dong
have numerically demonstrated the stability of multipole-mode solitons
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in NLC [14] and thermal nonlinear media [15], respectively. However,
in order to known more about the propagation of multipole-mode
solitons in NLC and thermal nonlinear media [13], it is necessary to
theoretically investigate it, such as this paper obtains an approximately
analytical solution of HG soliton in NLC by variational approach and
confirms it by numerical simulation. Furthermore, the numerical result
shows that the scalar higher-order HG soliton (𝑛 ≥ 5) is unstable, and
Ref. [1] and [2] demonstrated that the coupled propagation can enhance
the stability of multipole-mode optical beams. Therefore this paper
also numerically studies the HG vector soliton and found a complex
relation between the total critical power and the initial powers of the
components.

2. Scalar HG soliton

2.1. Theory model and variational approximation

The propagation of a paraxial optical beam in (1+1)-dimension non-
local nonlinear media is modeled by the normalized nonlocal nonlinear
Schrodinger equation (NNLSE) [3,16] as follows:
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Fig. 1. Propagation of HG beam in strong nonlocal media with exponential-decay response function. The parameters are chosen as (a) 𝑛 = 0, 𝑃 𝑐 0 = 1030, (b) 𝑛 = 1, 𝑃 𝑐 1 = 1840, (c) 𝑛 = 2,
𝑃 𝑐 2 = 2550, (d) 𝑛 = 3, 𝑃 𝑐 3 = 3300, (e) 𝑛 = 4, 𝑃 𝑐 4 = 3850, (f) 𝑛 = 5, 𝑃5 = 4400, (g) 𝑛 = 6, 𝑃6 = 4900, (h) 𝑛 = 10, 𝑃10 = 6400, (i) 𝑛 = 15, 𝑃15 = 8200.

where 𝜓(𝑥, 𝑧) is the paraxial optical beam, 𝑥 and 𝑧 are the transverse and
longitudinal coordinates which were scaled by the input beam width and
diffraction length, respectively. 𝑅(𝑥) is the real normalized symmetric
response function, and can be taken as exponential-decay shaped for the
(1 + 1)–dimension NLC [12,13,16]
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where 𝜎 is the characteristic length of the response function.
The Lagrange density equation, which corresponding to Eq. (1), can

be written as
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Assuming that the paraxial optical beam is HG shaped [3]
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In strong nonlocal media, the response function can be expand as follows
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where 𝐴(𝑧) represents the amplitude, 𝐻𝑛[𝑥∕𝑎(𝑧)] stands for the Hermite
polynomial, 𝜃(𝑧) is the phase of complex amplitude, 𝑐(𝑧) and 𝑎(𝑧) rep-
resent the phase-front curvature and the fundament-mode beam width,
respectively. According to the definition of the second-order moment
for beam width, the initial high-order HG beam widths are (2𝑛+ 1)1∕2𝑎.
𝜎 is the characteristic length of the response function. Therefore we can
predict that the stability of the HG soliton is decrease as the increase of
the order in general for the weakening of the nonlocality which can be
expressed as 𝜎∕(2𝑛 + 1)1∕2𝑎.

Then the average Lagrange can be obtained by substituting Eqs. (4)
and (5) into Eq. (2) and integrating Lagrange density over 𝑥
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𝑏𝑛 is a constant which dependent on 𝑛, such as 𝑏0 =
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2 et al.
Based on the Euler–Lagrange equations, we can obtain the evolution

equations for the parameters of the optical beam
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where𝐴𝑖𝑛 and 𝑎𝑖𝑛 are the initial amplitude and beam width, respectively.
The evolution law of the beam width can be obtained by combining
Eqs. (8b) and (8d),
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