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a b s t r a c t

By considering the spatial motion of the atoms, we study the time evolution of Bell nonlocality and entanglement
of a pair of atoms for two kinds of Werner-type internal states in an ideal single-mode ring cavity. We have proved
that both Bell nonlocality and entanglement have the phenomena of sudden death and sudden birth for the initial
state 𝑊 ′

±, while for the initial state 𝑊±, Bell nonlocality has the phenomenon of sudden death, but entanglement
decays to zero asymptotically over time. We also notice that the preservation of Bell-inequality violation is much
shorter than that of entanglement. In addition, it is shown that the disentanglement time and the Bell-inequality
violation time both depend on the purity and the width of the wave packet describing the motion of the atomic
center of mass.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

As we all know, Entanglement as a kind of quantum correlation,
is the characteristic feature of quantum mechanics. Because of its
important applications in quantum information and quantum compu-
tation [1–4], Entanglement has under extensive research in the last few
years. Due to the inevitable interaction with an environment, people
find the phenomena of entanglement sudden death (ESD) [5–8] and
entanglement sudden birth (ESB) [9,10] during the course of research.

Like entanglement, Bell-nonlocality is also a sort of quantum correla-
tion beyond space, which is the unique property of quantum mechanics
and cannot be reproduced by any classical local model. The presence
of Bell-nonlocality is unambiguously identified by the violation of Bell
inequality (especially the CHSH Bell inequality), which has been proved
both theoretically and experimentally. In recent years, the relationship
between entanglement and Bell-nonlocality has attracted wide atten-
tion [11–16]. Like ESD and ESB, people also find the phenomena of
Bell-nonlocality sudden death (BNSD) and Bell-nonlocality sudden birth
(BNSB) [17–20]. Apart from the phenomena of BNSD and BNSB, people
also notice that some states with a very high value of entanglement but
not showing any inherent nonlocal correlations and the only method for
identification of these states is to see whether they violate the famous
CHSH-Bell inequality. The Bell violations of CHSH-Bell inequality dis-
tinguish the genuine multipartite entanglement which has recently been
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recognized as a valuable resource that is of crucial importance in realiza-
tion of many quantum computation [21,22] and quantum information,
such as device-independent random number generation (DIRNG) [23]
and device-independent quantum key distribution (DIQKD) [24–26].

In Ref. [27], they have studied two atoms’ entanglement for two
pure Bell-like states in a single-mode ring cavity. In the present paper,
based on Ref. [27], we study the time evolution of Bell-nonlocality as
measured by CHSH-Bell inequality for two Werner-like type states. We
compare the dynamics of Bell-nonlocality with that of entanglement as
measured by concurrence and conclude that the preservation of Bell-
inequality violation is significantly shorter than that of the entangle-
ment, and the disentanglement time and the Bell-nonlocality violation
time are both influenced by the atomic wave packet’s width. Because
the two atoms are placed in an ideal single-mode ring cavity, the
phenomena of collapse and revival of Bell-nonlocality and entanglement
both happen.

The other parts of the present letter is arranged as follows. In
Section 2, we introduce the total system’s effective Hamiltonian and its
eigenequation. In Section 3, we assume that initially the two atoms are
prepared in the superposition state of two Gaussian wave packets and
the cavity-field is prepared in a vacuum state, and derive the reduced
density matrix for the two atoms’ Werner-like type states by tracing off
the degrees of freedom of the field and the external motion of the atoms
in the relative-coordinate picture. In Section 4, the CHSH-type Bell
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inequality and concurrence are briefly reviewed and purity as well as
the width of the wave packet effects on the dynamics of Bell nonlocality
and entanglement for two Werner-like type internal states are analyzed.
In Section 5, we summarized the important conclusions of this letter.

2. Model and its solution

In this part, we first consider a bipartite system which is composed of
two identical two-level atoms and the two atoms are affected by an ideal
single-mode cavity field. A pair of atoms we considered here with the
same mass 𝑚0 are named as atom 1 and atom 2, separated by a transition
frequency 𝜔0 between the excited state |𝑒⟩ and the ground state |𝑔⟩. It
is assumed that the two atoms are discrete in space, and the position
coordinates are 𝑥̂1 and 𝑥̂2 respectively, and the corresponding momenta
are 𝑝̂1 and 𝑝̂2. Thus the expressions 𝑝̂ = (𝑝̂1 − 𝑝̂2)∕2 and 𝑃 = 𝑝̂1 + 𝑝̂2 are
the relative momentum and the center of mass (CM) of the momentum
for the two atoms. Here, 𝑋̂ =

(

𝑥̂1 + 𝑥̂2
)

∕2 stands for the two atoms’ CM
position and 𝑥̂ = 𝑥̂1 − 𝑥̂2 is the relative position of the two atoms.

For above quantum model we considered here, whose dynamics is
governed by the following Hamiltonian (here we have taken on account
the condition of rotating-wave approximation):

𝐻̂ =
𝑝̂21
2𝑚0

+
𝑝̂22
2𝑚0

+ 1
2
ℏ𝜔0

(

𝜎̂(1)𝑧 + 𝜎̂(2)𝑧
)

+ ℏ𝜔𝑎̂†𝑎̂

+ℏ𝑔
[

𝑎̂(𝜎̂(1)+ 𝑒𝑖𝑘𝑥1 + 𝜎̂(2)+ 𝑒𝑖𝑘𝑥2 ) +𝐻.𝑐.
]

, (1)

where 𝜎̂(𝑖)𝑧 = |

|

𝑒𝑖⟩ ⟨𝑒𝑖|| − |

|

𝑔𝑖⟩ ⟨𝑔𝑖||, 𝜎̂
(𝑖)
+ = |

|

𝑒𝑖⟩ ⟨𝑔𝑖|| and 𝜎̂(𝑖)− = |

|

𝑔𝑖⟩ ⟨𝑒𝑖|| (𝑖 = 1, 2)
are the transition, rising and lowering operators for the 𝑖th atom related
with the ground state |𝑔⟩ and the excited state |𝑒⟩; 𝑎̂† and 𝑎̂ are the
creation and annihilation operators for the cavity field, 𝜔 and 𝑘 are the
cavity field’s frequency and wave number; and 𝑔 is a constant which
depicts the interaction of the atom and the field. The photon absorption
and emission processes associated with the photon back-action to the
corresponding atom can be seen from Eq. (1).

The evolution operator 𝑈̂ (𝑡) = exp(−𝑖𝐻̂𝑡∕ℏ) can be factorized into
the following form:

𝑈̂ (𝑡) = 𝑊̂ (𝑥1)𝑊̂ (𝑥2)𝑈̂𝑒(𝑡)𝑊̂ (𝑥2)†𝑊̂ (𝑥1)†, (2)

where the unitary operator 𝑊̂ (𝑥𝑖) (𝑖 = 1, 2) is given by

𝑊̂ (𝑥𝑖) = exp
(

𝑖𝑘𝑥𝑖
2

)

|𝑒𝑖⟩⟨𝑒𝑖| + exp
(

−𝑖𝑘𝑥𝑖
2

)

|𝑔𝑖⟩⟨𝑔𝑖|, (3)

describes the coupling of the spatial degrees with the internal levels of
the atom 𝑖. The effective Hamiltonian 𝐻̂𝑒 = 𝐻̂0 + 𝐻̂1 of the system is
given as follows:

𝐻̂0 =
𝑝̂21
2𝑚0

+
𝑝̂22
2𝑚0

+ ℏ2𝑘2

4𝑚0
, (4)

𝐻̂1 = ℏ
∑

𝑖=1,2

[

𝛺𝑖
2
(|
|

𝑒𝑖⟩ ⟨𝑒𝑖|| − |

|

𝑔𝑖⟩ ⟨𝑔𝑖||) + 𝑔(𝑎̂
†
|

|

𝑔𝑖⟩ ⟨𝑒𝑖|| + H.c.)
]

+ ℏ𝜔𝑎̂†𝑎̂. (5)

where the expression of the operator 𝑈̂𝑒(𝑡) is 𝑈̂𝑒(𝑡) = exp
(

−𝑖𝐻̂𝑒𝑡∕ℏ
)

.
Here, because the velocity of a realistic atom is far smaller than

the light velocity in vacuum, then we can draw the conclusion that
𝛺1 = 𝜔0 + 𝑝1𝑘∕𝑚0 ≈ 𝜔0 and 𝛺2 = 𝜔0 + 𝑝2𝑘∕𝑚0 ≈ 𝜔0. Furthermore,
for simplicity, we consider the resonance case, namely, 𝜔0 = 𝜔.

According to Eq. (5), the total excitation number 𝑎̂†𝑎̂ + |𝑒1⟩⟨𝑒1| +
|𝑒2⟩⟨𝑒2| is conserved during the interaction and in this subspace the
total excitation number is 𝑛 + 2. By solving the eigenequation of 𝐻̂1,
in a base formed by |

|

𝑒1, 𝑒2, 0⟩, ||𝑒1, 𝑔2, 1⟩, ||𝑔1, 𝑒2, 1⟩ and |

|

𝑔1, 𝑔2, 2⟩[27], the
eigenstates of 𝐻̂1 are found to be of the form:

|𝛹⟩(0)1 =

√

6
3

|

|

𝑒1, 𝑒2, 0⟩ −

√

3
3

|

|

𝑔1, 𝑔2, 2⟩ , (6)

|𝛹⟩(0)2 = −

√

2
2

|

|

𝑒1, 𝑔2, 1⟩ +

√

2
2

|

|

𝑔1, 𝑒2, 1⟩ , (7)

|𝛹⟩(0)3 =

√

6
3

|

|

𝑒1, 𝑒2, 0⟩ +
1
2
|

|

𝑒1, 𝑔2, 1⟩ +
1
2
|

|

𝑔1, 𝑒2, 1⟩ +

√

3
3

|

|

𝑔1, 𝑔2, 2⟩ , (8)

|𝛹⟩(0)4 = −

√

6
6

|

|

𝑒1, 𝑒2, 0⟩ +
1
2
|

|

𝑒1, 𝑔2, 1⟩ +
1
2
|

|

𝑔1, 𝑒2, 1⟩ −

√

3
3

|

|

𝑔1, 𝑔2, 2⟩ (9)

with the eigenvalues

𝐸(0)
1 = 𝐸(0)

2 = ℏ𝜔0, 𝐸(0)
3 = ℏ𝜔0 +

√

6ℏ𝑔, 𝐸(0)
4 = ℏ𝜔0 −

√

6ℏ𝑔. (10)

Similarly, the total excitation number 𝑎̂†𝑎̂+ |𝑒1⟩⟨𝑒1| (or 𝑎̂†𝑎̂+ |𝑒2⟩⟨𝑒2|)
is conserved during the interaction and in this subspace the total
excitation number is 𝑛 + 1. By solving the eigenequation of 𝐻̂1, in a
base formed by |

|

𝑒1, 𝑔2, 0⟩, ||𝑔1, 𝑒2, 0⟩ and |

|

𝑔1, 𝑔2, 1⟩, the eigenstates of 𝐻̂1
are found to be of the form:

|𝛹⟩(0)1 =

√

2
2

|

|

𝑒1, 𝑔2, 0⟩ −

√

2
2

|

|

𝑔1, 𝑒2, 0⟩ , (11)

|𝛹⟩(0)2 = 1
2
|

|

𝑒1, 𝑔2, 0⟩ +
1
2
|

|

𝑔1, 𝑒2, 0⟩ +

√

2
2

|

|

𝑔1, 𝑔2, 1⟩ , (12)

|𝛹⟩(0)3 = 1
2
|

|

𝑒1, 𝑔2, 0⟩ +
1
2
|

|

𝑔1, 𝑒2, 0⟩ −

√

2
2

|

|

𝑔1, 𝑔2, 1⟩ (13)

with the eigenvalues

𝐸(0)
1 = 0, 𝐸(0)

2 =
√

2ℏ𝑔, 𝐸(0)
3 = −

√

2ℏ𝑔. (14)

3. The two atoms’ reduced density matrix

First of all, we may supposed that:
(i) The two atoms are in the following separable state |𝜓 (0)⟩ at the

initial time.

|𝜓 (0)⟩ = |𝜇⟩1 ⊗ |𝜇⟩2. (15)

Here, |𝜇⟩𝑖 (𝑖 = 1, 2) denotes the 𝑖th atom’s Gaussian wave packet
describing the corresponding atom’s spatial distribution, which can be
expressed as:

𝜇
(

𝑥𝑖, 0
)

= ∫

∞

−∞
𝑑𝑝𝑖 𝐶𝑝𝑖 exp

( 𝑖
ℏ
𝑝𝑖𝑥𝑖

)

=
(

1
2𝜋𝑑2

)1∕4
exp

[

−
(𝑥𝑖 + 𝑎𝑖)2

4𝑑2

]

, (16)

where
𝑎𝑖 and 𝑑 are the center and the width of the Gaussian function

𝜇
(

𝑥𝑖, 0
)

. The coefficient 𝐶𝑝𝑖 is expressed as

𝐶𝑝𝑖 =
(

2𝑑2

𝜋ℏ2

)1∕4
exp

(

−
𝑑2𝑝2𝑖
ℏ2

+
𝑖𝑎𝑖𝑝𝑖
ℏ

)

. (17)

For the sake of simplicity, we suppose that 𝑎1 = −𝑎2 = 𝑎∕2. Then in the
initial time, the density operator of the two atoms concerning spacial
motion can be written as 𝜌̂𝑠 (0) = |𝜓 (0)⟩ ⟨𝜓 (0)|.

(ii) The two atoms are in a Werner-like type state 𝑊± [28] specified
below:

𝑊± = (1 − 𝑝)
𝛱4
4

+ 𝑝 |
|

𝛹±
⟩⟨

𝛹±
|

|

. (18)

With
|

|

𝛹±
⟩

= 1
√

2
(|
|

𝑒1, 𝑒2⟩ ± |

|

𝑔1, 𝑔2⟩), 𝛱4 denotes the 4 × 4 identity matrix
and the parameter 𝑝 indicates the purity of the initial states which ranges
from 0 for maximally mixed states to 1 for pure states. Then in the initial
time, the density operator of the two atoms concerning their internal
state may as well be written as 𝜌̂𝑖 (0) = |

|

𝑊±
⟩⟨

𝑊±
|

|

.
(iii) The initial state of the cavity field is a vacuum state, i.e., 𝜌̂𝑓 (0) =

|0⟩ ⟨0|.
Based on the above, it is easy to obtain the whole system’s density op-

erator of the initial time, which is of the form 𝜌̂ (0) = 𝜌̂𝑠(0) 𝜌̂𝑖 (0) 𝜌̂𝑓 (0).
As time evolves, the density operator of the system becomes 𝜌̂ (𝑡) =
𝑈̂ (𝑡)𝜌̂ (0) 𝑈̂†(𝑡). Here, 𝑈̂ (𝑡) is the unitary operator in Eq. (2). In the
standard basis |

|

𝑒1, 𝑒2⟩ , ||𝑒1, 𝑔2⟩, ||𝑔1, 𝑒2⟩ and |

|

𝑔1, 𝑔2⟩, the elements of the
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