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a b s t r a c t

Propagation of wide optical beams in transverse periodic lattices have been reported to induce power oscillations
between Fourier modes related by the Bragg resonance condition, resulting from the coupling between the beam
and the periodic structure. These oscillations have been referred to as Rabi optical oscillations due to the analogy
with matter Rabi oscillations. In this work, we investigate the behavior of Bragg-induced Rabi-type oscillations
of a multimode Gaussian beam in the presence of optical nonlinearity. We find a combination of oscillation and
spectrum broadening under both self-focusing and self-defocusing nonlinearities, in the sense that the oscillations
are maintained while the spectrum is broadened and therefore partially transferred to the twin frequency. For
intense self-focusing nonlinearities a complete leak of the initial mode profile to other modes is rapidly attained
so that no oscillation is observed. In contrast, for intense self-defocusing nonlinearities the redistribution rate is
so dramatic that oscillations cease and power only fades away.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The effect of spatially periodic potentials on the propagation of
quantum particles have been remarkably illustrated in recent years in
optical periodic systems. These optical systems have provided a myriad
of experiments that exhibit phenomena well known in its electronic
counterpart. Photonic lattices with a transverse refractive index gradient
have served as an experimental tool that permits the observation of
coherent phenomenon such as Bloch oscillations and Zener tunnel-
ing [1–7]. Bloch oscillations result from the coherent scattering from
the periodic structure in a Bragg fashion [8]. Recently, Bragg-resonance-
induced Rabi oscillations of a beam propagating through a photonic
lattice have been reported in the literature [9], presented as an analog
of Rabi oscillations in a two level system driven by an external optical
field. In the optical analog, the photonic lattice plays the role of the
field which couples the pair of resonant modes of the beam, which plays
the role of the two-level system, inducing Rabi-type power oscillations.
Rabi oscillations have also been reported in waveguide arrays where
power transfer occur between two modes under phase-matching con-
ditions [10]. Nonlinear light propagation in photonic lattices, where
there is an interplay between diffraction and nonlinearity, may be
experimentally carried out to show dramatic changes in spectrum [11].
Work on a nonlinear periodic photonic lattice, under the assumption of
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a constant field amplitude in a Bragg fashion configuration, has reported
a mode trapping phenomena (whereby Rabi oscillations cease under the
influence of self-focusing nonlinearity) and a nonlinear modulation of
the Rabi oscillation period [12].

As the power spectra and phase structures of a spatial beam
play completely different roles under linear or nonlinear propagation
regimes, in this work we wish to study the influence of nonlinearity on
the optical Rabi oscillations induced upon a multimode beam, centered
around the Bragg resonance mode, propagating through a photonic
lattice with a period much smaller than the beam width. Numerical
results based on the nonlinear Gross–Pitaevskii equation show that
for a Gaussian input, a weak and positive (self-focusing) nonlinearity
promotes the redistribution of the energy among neighboring modes
while keeping the oscillations, so that the distorted spectrum is partially
transferred to its twin frequency. In contrast, in case of a strong and
positive nonlinearity we have found that power redistribution occurs in
a faster rate so that the energy transferred has become a tiny fraction of
the input. For a negative (self-defocusing) weak nonlinearity, the results
are practically identical to the positive weak nonlinear case. In both
cases damping is always present due to the redistribution of the initial
mode power among its neighbors so that the power transfer to the twin
mode is only partial. However for a strong negative nonlinearity, the
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redistribution rate is so dramatic that oscillations cease and power only
fades away.

2. Theory and results

To model the beam dynamics in a physically realizable scheme, we
follow the theory developed in [4] by assuming a one-dimensional pho-
torefractive optically induced photonic lattice. The equations governing
the evolution of the lattice waves 𝑊 , responsible for the creation of the
periodic potential, and the probe 𝑈 , that will perform Bragg-induced
Rabi oscillations, may be described by the following pair of coupled
nonlinear partial differential equations:
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+ 1
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where 𝑘1 = 2𝜋𝑛𝑒∕𝜆, 𝑘2 = 2𝜋𝑛𝑜∕𝜆, 𝑛𝑒 and 𝑛𝑜 are the refractive index
for the extraordinary and ordinary directions, respectively, 𝛥𝑛 is the
nonlinear index change, 𝐼 = |𝑈 |

2 + |𝑊 |

2 the total intensity of the two
orthogonally polarized fields and 𝜆 the free space wavelength [4]. By
considering only the dominant screening nonlinearity, the terms 𝛥𝑛𝑒 and
𝛥𝑛𝑜 are given by
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where 𝑘0 = 2𝜋∕𝜆, 𝑟𝑖𝑗 is the electro-optic tensor coefficient, 𝐸0 is the
applied bias field and 𝐼(𝑥) = 𝐼(𝑥)∕𝐼𝑑 with 𝐼𝑑 the dark irradiance of
the crystal. By externally illuminating the photorefractive crystal, 𝐼𝑑
may attain large values and here, we assume that this fact justifies the
binomial expansion used on the right side of Eqs. (3) and (4) [13,14].
As 𝛥𝑛𝑜 is typically much smaller than 𝛥𝑛𝑒, the propagation of the lattice
waves 𝑉 is linear to a good approximation and |𝑊 |

2 plays the role of a
potential in the evolution of 𝑈 . Quantitatively this means that one may
substitute Eq. (3) by Eq. (1):
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where we have scaled 𝑘1𝑧 → 𝑧 and 𝑘1𝑥 → 𝑥. The bias electric field 𝐸0
may assume positive or negative values, 𝐸0 = ±|𝐸0|, and therefore two
cases may be distinguished and treated separately. If one chooses 𝐸0 > 0,
then it is useful to define 𝜅 = |𝜅| = 𝑛2𝑒𝑟33|𝐸0|∕2𝐼𝑑 which plays the role
of a positive nonlinear constant, or, a self-focusing nonlinearity. For this
case, the potential term in Eq. (5) is 𝑉 (𝑥) = |𝜅|[𝐼𝑑−|𝑊 |

2] and by writing
|𝑊 |

2 = 𝐼𝑑 − |𝑤0|
2 cos 𝑥 (with |𝑤0|

2 ≤ 𝐼𝑑) then 𝑉 (𝑥) = |𝜅||𝑤0|
2 cos 𝑥 =

𝑉0 cos 𝑥 in which 𝑉0 may be controlled through |𝜅|. The Gross–Pitaevskii
equation in this case is written as:
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Likewise, if 𝐸0 = −|𝐸0| then, following the same steps as above, one may
write 𝑉 (𝑥) = |𝜅|[|𝑊 |

2−𝐼𝑑 ], and if |𝑊 |

2 = 𝐼𝑑+|𝑤0|
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on |𝑤0|
2 and 𝐼𝑑 in this case) then 𝑉 (𝑥) = |𝜅||𝑤0|

2 cos 𝑥 = 𝑉0 cos 𝑥 as well.
The Gross–Pitaevskii equation in this situation has the same form as in
Eq. (6) except for a minus sign before the nonlinear constant, which
now represents a self-defocusing nonlinearity. Typical values for the
system material parameters are 𝑛𝑒 = 2.299, 𝑛𝑜 = 2.312, 𝑟33 = 1340 pm/V,
𝑟13 = 67 pm/V and 𝐸0 ≈ 102 V/mm. By using these values, the nonlinear
coefficient is of the order 𝜅 = 3.612× 10−4∕𝐼𝑑 which can be easily tuned
through the dark irradiance. With the formalism just developed, our
next objective is to solve Eq. (6) using a multimode beam centered at
the Bragg resonant frequency, as initial condition to observe the effect of
the nonlinearity (positive and negative) on the Rabi oscillation dynamics
exhibited by the spectrum.

To this end, let us begin by assuming the initial condition for the
Gross–Pitaevskii Eq. (6), a multimode Gaussian beam centered at the
Bragg resonant frequency 𝑘𝐵 , that is,

𝑈 (𝑥, 0) = exp

[

−1
2

(

𝑥
𝑋0

)2
]

exp(𝑖𝑘𝐵𝑥), (7)

where 𝑋0 is the normalized beam initial width and 𝑘𝐵 the normalized
wavevector component in the 𝑥 direction at the particular value 𝑘𝐵 =
1∕2 (edge of the Brillouin zone) and we initially assume that 𝑋0 = 100𝑃 ,
where 𝑃 is the lattice period, in what follows. Later we study the
influence of the beam width and discuss it in Fig. 5 where 𝑋0 varies.
As the beam width is many times the lattice period, we are in the
opposite regime of discrete diffraction [15–19]. The numerical method
used to solve Eq. (6) was a pseudospectral Fourier method which is
well described in [20]. The number of points used in the 𝑥 direction
was 2048, the computational window had a transverse length of 5𝑋0
in order to make border effects negligible and the propagation step
was 0.01 ranging from zero to 60. Let us treat the linear case (𝜅 = 0)
first, which could be achieved if |𝑤0|

2 ≫ |𝑈 |

2 so we can work with
the usual Schrödinger equation. The upper part of Fig. 1 shows the
solution of Eq. (6) in Fourier space with potential strength 𝑉0 = 0.1.
This numerical value of 𝑉0 was assumed in all subsequent simulations
in order to guarantee that the initial mode localized at 𝑘𝑥 = 𝑘𝐵 remains
strongly coupled only to modes inside the first Brillouin zone. The
Fourier transform is taken only in the 𝑥 direction, 𝑈𝑘(𝑘𝑥, 𝑧) = F𝑥[𝑈 (𝑥, 𝑧)],
where F𝑥[⋅] represents the Fourier transform operator in the 𝑥 direction.
For small 𝑧, all spatial frequencies are situated around 𝑘𝐵 = 1∕2
and this simply represents the Fourier transform of Eq. (7), where a
Gaussian profile centered at 𝑘𝐵 = 1∕2 with a width 𝛥𝑘𝑥 ∼ 0.0012 is
initially expected. As the beam propagates inside the medium, Bragg-
induced effects act on the spatial mode profile and it is useful to define
the population difference as |𝑈𝑘(1∕2, 𝑧)|

2 − |𝑈𝑘(−1∕2, 𝑧)|
2. With this

definition, it can be seen that for 𝑧 ≈ 30, all Fourier components are
shifted to −𝑘𝐵 , as the bottom part of Fig. 1 indicates. At 𝑧 ≈ 60 all Fourier
mode is traced back to the initial one around 𝑘𝐵 and therefore this value
represents the approximate oscillation period between the two modes.
In this linear regime, there is no bandwidth distortion and the cycle
continues oscillating forever between ±𝑘𝐵 . Since there is no addition
of spatial frequencies in the linear approximation, we expect the spatial
dependence of 𝑈 (𝑥, 𝑧) to maintain its Gaussian shape so that it is possible
to define a beam center through �̄� = ∫ 𝑥|𝑈 |

2𝑑𝑥∕ ∫ |𝑈 |

2𝑑𝑥 and to show
that it exhibits spatial oscillations [9]. These spatial oscillations are a
consequence of the Bragg-induced mode transfer between ±𝑘𝐵 . It should
be noted that the lack of spatial frequency broadening (even in a linear
propagation regime with no lattice present) is due to the spatial range
of 𝑧 considered in the analysis. In a linear approximation we expect the
beam to diffract for 𝑧𝑑 ∼ 𝑋2

0 and, as we chose as maximum value 𝑧 = 65
one may safely neglect diffraction effects for which the second term in
Eq. (6) is responsible. Therefore, all bandwidth modifications are due to
the lattice or the nonlinear coupling. This does not mean that one may
discard the diffraction term in Eq. (6) for our beam propagates with a
transverse wavevector 𝑘𝐵 in the 𝑥 direction such that the effect of 𝜕2∕𝜕𝑥2
is essential.

Let us now solve Eq. (6) with 𝜅 > 0, representing a self-focusing
nonlinearity. The results for the evolution of Fourier modes, using the
same parameters as in Fig. 1, except for the nonlinear coefficient which
is now taken as 𝜅 = 0.1, are shown in Fig. 2. This figure illustrates how
the initial Gaussian distribution in Fourier space changes dramatically
as the beam propagates inside the nonlinear periodic medium. At 𝑧 ≈ 60
the Fourier peak broadens and the spatial frequency spectrum is approx-
imately zero at the Fourier mode 𝑘𝐵 (see the bottom part of Fig. 2) while
a periodic pattern starts to develop inside the initial beam bandwidth.
This effect is the spatial analog of the self-phase modulation (SPM)
effect that occurs with optical pulses propagating in dispersive nonlinear
media [21]. The main effect of SPM is to create an oscillatory pattern
structure inside the beam’s initial frequency bandwidth. But, in our
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