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A B S T R A C T

In this work, the effects of intense laser field on the nonlinear optical rectification in a two-dimensional
quantum pseudodot system subjected to an uniform external magnetic field have been investigated
theoretically. The non-resonant monochromatic intense laser field with circular polarization has been taken
into account within the framework of high-frequency Floquet theory. Analytical expression for the coefficient of
nonlinear optical rectification is deduced by using the compact-density matrix approach and iterative method.
Numerical results show that the nonlinear optical rectification coefficient depends strongly on the magnitude of
magnetic field, the chemical potential and zero point of the pseudoharmonic potential. Moreover, we have
demonstrated that the strength of intense laser field alters the structure of confinement potential and affects
remarkably the nonlinear optical rectification coefficients.

1. Introduction

During the last two decades, low-dimensional structures such as
quantum wells, quantum wires and quantum dots (QDs) have attracted
a great deal of interest due to their unusual optical properties for device
applications in the infrared region [1–3]. Progress in semiconductor
growth technology renders possible the fabrication of quantum dots
with different size and geometry. Confinement of the motion of charge
carriers gives rise to the formation of discrete electronic energy levels
and brings about large optical nonlinearities in comparison with bulk
semiconductor [4,5]. Several theoretical and experimental studies have
been conducted to find out the electronic structure and optical proper-
ties of quantum dots with different shapes (spherical, cylindrical,
ellipsoidal, lens shape and parabolic cylinder) by considering confine-
ment potentials such as infinite, finite, Gaussian and parabolic [6].

Among the nonlinear optical properties, optical rectification, sec-
ond-harmonic generation and electro-optic effect are the simplest and
the lowest-order nonlinear processes usually stronger than the other
optical nonlinearities particularly in quantum systems exhibiting an
asymmetry [7–12]. Optical rectification coefficient (ORC) has been
studied in several quantum systems [13,14]. Yu et al. researched the
exciton effects on the nonlinear optical rectification in one-dimensional
quantum dots [15]. Nonlinear optical rectification in cubical quantum
dots has been studied by Zhang et al. [16]. The role of applied magnetic
field on the nonlinear optical rectification of hydrogenic impurity in a

disk-like parabolic quantum dot has been analyzed by Shojaei and
coworkers [17].

Electronic and optical properties of nanostructures can be manipu-
lated and controlled by external perturbations [18–20]. In this context,
advent of strong coherent tunable laser sources has provided an
opportunity to survey the response of quantum systems to external
fields [21–24]. Many interesting physical phenomena associated with
the intense laser field (ILF)-matter interaction has been reported [25–
27]. Lima et al. have studied that dichotomy of the exciton wave
function and transition from single to double quantum well potential in
quantum wells under intense laser fields [28]. The effects of intense
laser field on donor impurities in a cylindrical quantum dot under
external electric field have been investigated by Kasapoğlu et al. [29].
Unified view of low- and high-frequency regimes of atomic ionization in
intense laser fields have been examined by Miyagi and Someda [30].
Lahon et al. discussed the effect of elliptically polarized laser field on
linear and non-linear properties of quantum dots [31]. It's well known
that the geometry has a noticeable effect on the physical propertis of
QDs. Across a wide number of studies, mostly the harmonic oscillator
potential is considered due to being close to the molecular vibrational
potential in QDs and more of an computational simplicity.
Nevertheless, in comparison with a real molecular vibrational poten-
tial, this one could be interpreted as an unrealistic [32]. Therefore, QD
can be described more properly via combination of dot and antidot
potentials. Çetin has investigated the electronic structure of a two-
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dimensional pseudoharmonic quantum dot (2DPHQD) with the pre-
sence of a strong magnetic field together with an Aharonov-Bohm flux
field [33]. Rezaei et al. have researched the optical rectification
coefficient (ORC) of a two-dimensional quantum pseudodot system
[4]. The effects of electromagnetically induced transparency in a two-
dimensional quantum pseudodot system have been demonstrated by
Jahromi et al [34]. Khordad has studied bound polaron in a quantum
pseudodot considering Rashba spin-orbit interaction effect [35].

Though remarkable interest has been shown on the research of ILF
effects on nonlinear optical properties of quantum dots, the nonlinear
optical rectification in a two-dimensional quantum pseudodot system
under ILF has not been investigated so far. In this paper, we focus on
the laser-induced ORC in quantum dot subjected to an uniform
external magnetic field where the laser field has been treated via
laser-dressed potential approach. The paper is organized as follows: In
Section 2, the theoretical framework is briefly given. Results are
presented in Section 3 and finally the conclusions are given in
Section 4.

2. Theory

Within the framework of the effective mass approximation, the
Hamiltonian for an electron in a two-dimensional quantum pseudodot
system subjected to an uniform magnetic field is given by

H
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Here, m* is the electron effective mass, e is the absolute value of the
elementary charge, p is the momentum operator, r φ zA( , , )=̂

Br(0, /2, 0) is the vector potential corresponding to the magnetic field
chosen along the z-direction. V(r) is the confinement potential,
constitutive of both dot and antidot harmonic potentials [33], and is
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Here V0 defines the chemical potential of the two-dimensional electron
gas and r0 is the zero-point of the pseudoharmonic potential.

In the present study, the adopted approach for the inclusion of ILF-
effects onto the system is based upon a non-perturbative theory
developed to elucidate the atomic behavior in intense high-frequency
laser fields. Details of this approach are available in elsewhere [36–39].
Within the framework of the high-frequency Floquet theory, the
particle feels only the time average of the rapidly oscillating confine-
ment potential which implies
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where T π Ω= 2 / is the period of a high-frequency, non-resonant intense
laser field with angular frequency Ω. The vector α t( ) is related to the

vector potential of the radiation as ∫α At t dt( ) = ( ′) ′
t

. In this work, we
consider a non-resonant, monochromatic, circularly polarized intense
laser field with corresponding vector potential tA( )

t A x Ωt y ΩtA( ) = ( − sin + cos )0 (4)

which yields to α t( ) given as follows [38]:

α t α x Ωt y Ωt( ) = ( cos + sin ) ,0 (5)

where x and y are unit vectors orthogonal to the direction of
propagation. The laser-dressing parameter defined as α eA m Ω= / *0 0
represents the excursion amplitude of the particle in its quiver motion
in the laser field and is a characteristic parameter determined by the
intensity and frequency of the ILF [40].

Accordingly, by using Eqs. (2) and (3), the analytical expression for
the laser-dressed form of pseudoharmonic potential seen by the
electron is obtained as follows [41]:
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We should note that, due to the singularities of the potential at r α= 0,
in our calculations we merely considered the interval α r< < ∞0 .
Solution of Eq. (1) entail the use of cylindrical coordinates which
reads to:
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where ω eB m= / *c is the cyclotron frequency. By denoting the magnetic
quantum number as m and substituting the wave function Ψ expressed
as
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we get a one-dimensional radial equation. Setting the length and
energy scales as the effective Bohr radius a *0 and effective Hartree

energy E m a* = / * *H
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where the dimensionless measure of the magnetic field is chosen as
γ ω E= / *c H . We should note that, treatment of intense laser radiation
effect upon the system is performed via the replacement of the V(r)
term by its laser-dressed counterpart V αr〈 ( , )〉d 0 . Finite element method
has been utilized for the calculation of eigenenergies and correspond-
ing wave functions [42,43].

In order to calculate the second-order optical rectification coeffi-
cient, we assume that the system is illuminated by an optical light field
with frequency ω along the radial direction [20,44]. The electric field
vector of this optical wave is

E t E e E e( ) = + * .∼ ∼iωt iωt− (10)

Because of the time-dependent interaction, the time-evolution of the
matrix elements of one-electron density operator obeys the following
Liouville quantum equation [15]

ρ

t i
H M E t ρ Γ ρ ρ

∂

∂
= 1 [ − ( ), ] − ( − ) ,ij

ij ij ij0
(0)

(11)

where ρ is the density matrix of one-electron state and ρ (0) is the
unperturbed density matrix operator. H0 is the Hamiltonian of the
system in the absence of electromagnetic field, M E t erE t− ( ) = − ( )̂ is
the perturbation term and Γij is the relaxation rate caused the damping
processes. Eq. (11) can be solved by means of the standard iterative
method [45]:
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In addition, the electronic polarization of the system because of the
electric field, up to the third order in E∼, can be expressed as
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