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A B S T R A C T

Piezoelectric field is closely related to the elastic field, so it is important for the calculation of piezoelectric field
to include the size-dependent interface effect for the interface in nanostructures. This work adopts the semi-
coupled model to find the elastic and piezoelectric field for weakly electromechanical coupled materials (GaAs)
with the consideration of interface effect. Close-form solutions are derived and numerical results are also
provided to show that the piezoelectric potential in the matrix depends on the interface elasticity, the radius and
stiffness of the quantum dot. Especially, it is demonstrated that the piezoelectric potentials with different
interface elasticity parameters are distinct compared with the classical solution near the interface. When the
interface elasticity parameter is positive, the interface effect weakens the piezoelectric effect in the material by
decreasing the value of the piezoelectric potential and vice versa. The piezoelectric potential concentration ratio
calculated by this work with the consideration of interface elasticity is close to 10% different from the classical
solution. Such amount of difference is appreciable in the design and fabrication of nanostructures and the effect
due to interface elasticity should not be neglected.

1. Introduction

Many III-V semiconductor materials (e.g. GaAs, AlN and etc.)
exhibit piezoelectric behaviors. By taking the advantage of the piezo-
electric effect, these semiconductor materials are good candidates of
sensors, actuators or for energy-harvesting applications [1–3].
Furthermore, in modern technology, they could be fabricated as
semiconductor nanostructures, such as quantum dots (QDs), quantum
wells (QWs) or quantum wires (QWRs). When a QD is buried in a
surrounding matrix, an elastic field will be generated due to lattice
mismatch or thermal expansion difference between the QD and
surrounding matrix, which will induce an piezoelectric field in the
structure. Therefore, theoretical studies on the elastic and piezoelectric
field of nanostructures are helpful for the design and fabrication of
nanostructures. Typically in the physics community for the prediction
of the piezoelectric field, the elastic field is first solved and then it is
used to obtain the polarization field which calculates the piezoelectric
potential and electric field afterwards. Davies [4] formulated close-
form solutions to the elastic and piezoelectric field in an infinite region
of isotropic GaAs matrix due to a spherical InAs QD under hydrostatic
misfit strain. Taking advantage of the celebrated work of Eshelby [5]
and extended work of Downes et al. [6], Davies [4] also proposed
solution strategies for the piezoelectric field in an isotropic matrix
around any QD shapes. It should be noted that such semi-coupled or
sequentially-coupled model between strain and piezoelectric field only

works well where the electromechanical coupling in the semiconduct-
ing materials (e.g. GaAs) is weak. Pan [7] compared the different
results of the piezoelectric field using semi-coupled and fully-coupled
method. Furthermore, Pan [8] formulated the piezoelectric field in
anisotropic GaAs matrix due to a QD under hydrostatic misfit strain.
Recently, Chu et al. [9] proposed a general perturbation method for
inhomogeneities in anisotropic and piezoelectric solid with applications
to quantum-dot nanostructures. On the other hand, numerical solu-
tions to the elastic and piezoelectric field have also been used compared
to the analytical solutions. Jogai [10] numerically solved the three
dimensional strain and piezoelectric field in InN/AlN wurzite QDs. Liu
et al. [11] obtained the strain distribution in truncated GaN/AlN
hexagonal QD by finite element analysis and then the piezoelectric
field by numerical calculations afterwards.

Based on classical continuum mechanics, aforementioned works
treated the interface between the QD and matrix traditionally where all
physical quantities are continuous across the interface. In the design
and fabrication of nanostructures, the critical length of the nanostruc-
ture drops down to several nanometers and classical continuum
mechanics could not treat the subtle behavior of the interface (and
surface) appropriately. In this case, surface/interface stress should be
considered. Gurtin and Murdoch [12,13] first formulated the surface/
interface stress as a strain-dependent term so the stress field is actually
discontinuous across it. Miller and Shenoy [14] introduced the concept
of surface stiffness and demonstrated the size-dependent elastic
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properties of nano-sized structure members. Moreover, intrinsic sur-
face/interface properties could be obtained through molecular dy-
namics simulations [14–17]. Furthermore, it has been demonstrated
that the elastic field in nanostructures differs from classical solutions
due to the size-dependent surface/interface effect [18–21].

Since piezoelectric field is closely related to the elastic field, it is also
important for the calculation of piezoelectric field to include the size-
dependent interface effect for the interface between the QD and matrix
in nanotechnology. For simplicity, isotropic material properties are
assumed in this work as Refs. [4,7]. In fact, such simple assumption of
isotropic material properties is used often for anisotropic semiconduc-
tors to obtain close-form solutions or just to simplify the derivation
process in the literature. For instance, Sharma and Ganti [22] derived
the analytical solution to the size-dependent elastic state of embedded
InAs QD in GaAs matrix by assuming both the QD and matrix as
isotropic materials. Shodja et al. [23] investigated the behavior of an
edge dislocation in isotropic InAs core and GaAs matrix as a shell,
while Ahmadzadeh-Bakhshayesh et al. [24] investigated the behavior of
a screw dislocation in isotropic InAs core and InP matrix as a shell.
However, the anisotropic material properties of semiconductors are
still suggested to be used strictly for practical use. To focus on the
importance of the size-dependent interface effect, this work adopts the
semi-coupled model to find the elastic and piezoelectric field for weakly
electromechanical coupled materials (such as GaAs). Compared with
Refs. [4,7], our results indicate that interface elasticity can significantly
alter the elastic and piezoelectric field at nano scales.

2. Methodology

2.1. Elastic field

In Fig. 1, a spherical InAs QD (Ω) with radius R0 is buried in an
infinite GaAs matrix (V). The interface between the QD and matrix is
denoted by S. The QD is subjected to a dilatational eigenstrain ε* due to
lattice mismatch or thermal expansion difference between the QD and
surrounding matrix.

From continuum mechanics, the stress field is governed by the
stress equilibrium condition without body forces as:

σ = 0.ij j, (1)

The QD and matrix are both assumed to be isotropic materials.
Therefore, the constitutive relationship between the stress and strain
field are:

σ λε δ με= + 2 ,ij kk ij ij (2)

where λ and μ are Lamé constants for isotropic materials; δij is the
Kroneker delta tensor. The Lamé constants of the QD and matrix are
denoted as (λI, μI) and (λM, μM) respectively.

Since the size of QD is extremely small and its critical length drops
down to several nanometers, the mechanical behavior of the interface
between the QD and matrix should be considered to be size-dependent.
Consider a linear constitutive relationship between interface stress and
interface strain as [12,13]:

σ τ δ μ τ ε λ τ ε δ= + 2( − ) + ( + ) ,αβ
s

αβ S αβ
S

S γγ
S

αβ
0 0 0 (3)

where λS and μS could be regarded as interface Lamé constants to
describe the interface elasticity; τ° is the residual interface stress under
unstrained condition which is neglected in this work. It should be noted
that the interface elastic property is extremely difficult to obtain by
experiment so there is no such report on the values of λS and μS.
However, molecular dynamics simulations indicate that λS and μS are
between −10 N/m and 10 N/m for most metallic crystals and semi-
conductors [16,17,25]. Therefore, the interfacial elastic properties are
simply assumed in this work.

Additionally, the interface between the QD and matrix is considered
to deform coherently without slipping from the bulk material. In this
case, the interface strain equals to the bulk strain so the displacement
and strain field are continuous across the interface. However, the bulk
stress field in the QD and matrix are discontinuous and the bulk stress
state at the vicinity of the interface is determined from the interface
stress [12,13]:

σ σ n+ ⟦ ⟧ = 0,αβ β
s

αβ
b

β, (4)

σ κ σ n n= ,αβ
s

αβ ij
b

i j  (5)

where σαβ
s , σαβ

b are the interface stress and bulk stress respectively; καβ is
the curvature tensor and * = (*) − (*)M I  denotes the quantity jump
across the interface.

It should be noted that the interface stress tensor is a two-
dimensional quantity and the strain normal to the interface is excluded.
Thus, the Greek indices take the value of 1 or 2, while Latin subscripts
adopt values from 1 to 3. Eq. (4) could be regarded as interface stress
equilibrium equation similar to the bulk stress equilibrium equation of
Eq. (1), while Eq. (5) could be regarded as the interface boundary
condition.

In the current configuration, the displacement field is radically
symmetric, so the only nonzero displacement component in spherical
coordinate system is the radial displacement u = u (r), and the strain
field could be written as:

ε du
dr

ε ε u
r

= ; = =rr θθ ϕϕ (6)

In case of the radically symmetric configuration, the strain and
stress field should be also radically symmetric. Therefore, Eq. (5) of the
interface boundary condition could be simplified as [18]:

σ
σ
R

=
2

,rr
b θθ

S

0
 

(7)

where σrr
b is given in Eq. (2) and σθθ

S is given in Eq. (3).
From Eqs. (1)–(6), the displacement field could be solved as:
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where K λ μ= 3 + 2I I I and K λ μ= 2 + 2S S S are used to simplify the
notation.

It can be seen from Eq. (8) that the displacement field inside the QD
is proportional to the radius but it varies with an attenuating order of
r−2 in the matrix.

The strain field is also obtained as:Fig. 1. Schematic view of a spherical InAs QD buried in an infinite GaAs matrix.
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