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A B S T R A C T

We present a numerical analysis of several phase transitions which take place in the eigenmode spectrum of a
two-dimensional (2D) logarithmic cluster subjected to an anisotropic power law confinement. Varying the
anisotropy in a non-parabolic soft confinement drives the system to undergo structural phase transitions of first
order, while for a hard wall confinement this variation affects strongly the eigenmode spectrum and breaks the
symmetry of the system due to the removal of degeneracy and the coupling between some normal modes.

1. Introduction

Two-dimensional finite clusters have attracted much interest over
the past few decades due to their occurrence in a wide range of real
systems like electrons in quantum dots [1] or on the surface of liquid
Helium [2], charged particles on colloidal suspensions [3] and dusty
plasmas [4]. Theoretical works based on Monte Carlo and Molecular
Dynamics simulations [5–9] have revealed that the main feature of
such 2D systems is that particles can arrange themselves into ring-like
structures due to competing effects induced by the inter-particle
interaction and the confinement in which the system is trapped.
Depending on the possible charging processes, particles size and in
general on the experimental conditions, the interaction between the
particles may be different from one system to another, ranging from
short-range to long-range interactions. Consequently, the resulting
cluster undertakes a special dynamic which leads to different phase
transitions with respect to some order parameters.

Other interesting real systems are charged metallic balls [10] and
2D vortex clusters which occur in mesoscopic superconductors or
superfluids [11,12]. These clusters with a logarithmic inter-particle
interaction [13,14] may be considered as electrons in artificial atoms
that show self-organized patterns for a small number of electrons. For
general 2D clusters, detailed investigations of the ground state and
normal modes properties have been done in Refs. [15–19]. Previously,
it was found [20,21], that decreasing the anisotropy parameter from
1 → 0 leads to a sequence of first and second order phase transitions for
a system in a parabolic trap. This effect was studied earlier in Ref. [22]
where confined ion clusters are found also to exhibit structural phase
transitions with respect to the anisotropy of the confinement. The
critical anisotropy at which phase transitions take place is found to be

proportional to a power of the number of confined ions. For this latter
cluster, an experimental observation of the zig-zag transition and two
more complicated transitions to a 2D configuration are identified
recently by Yan et al. [23]. In Ref. [24] both effects of shielding and
anisotropy have been reported on the structure of 2D and 3D clusters.
Additionally, the anisotropy can be used to destabilize vortex clusters in
Bose-Einstein condensates, which are more stable in the isotropic limit
[25]. Recently, Laut et al. [26] showed that the anisotropy can enhance
a mode-coupling instability in plasma crystals [27]. Almost all the
previous analysis have been realized within the parabolic confinement
potential. However, the presence of anharmonicity in real systems may
conduct to a new behavior in the structure and the spectrum of 2D
clusters [28]. Within Ginzburg-Landau theory, it was found [29] that
the analytic form of the confinement has an eminent role in the
occurrence of zig-zag phase transitions.

In the present paper, we extend the previous investigations made in
an anisotropic parabolic confinement, to a general power-law aniso-
tropic trap where we consider 2D logarithmic clusters. Working on a
2D system is motivated by the fact that power-law traps are more easily
produced in 2D than in 3D space [30]. For 2D systems a variety of
experimental setups exists for producing power-law confinements
n( > 2) and even a hard wall confinement [30–32]. We study the
combined effect induced by the variation of both of anisotropy and
confinement power on the structure and normal modes of 2D clusters.
Phase transitions are classified with respect to jumps, softening and
coupling in the eigenmodes spectrum. Furthermore, the variation of
the highest frequency normal mode with the anisotropy parameter is
determined in different confinements, and a special attention is paid to
the behavior of some intermediate frequencies in the hard wall trap.

The paper is outlined as follows: In Section 2 we present our model
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system. In Section 3, the behavior of the eigenmodes is studied in both
soft and hard anisotropic confinements. Section 4 is devoted to main
conclusions.

2. Numerical model

We consider a two-dimensional (2D) cluster of N equally meso-
scopic charged particles trapped by an external power-law anisotropic
confinement and interacting through a logarithmic type interaction
which is a solution of the Poisson equation in 2D. Thus, our system is
described by the Hamiltonian,
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where m is the mass of the particles, ω0 is the radial confinement
frequency, n and α are respectively, the confinement power and the
anisotropy parameter. R is the length of the major axis in the limit of
the hard wall, i.e, n → ∞, r x y( , )i i i is the vector coordinates of the ith
particle and β is the particle-coupling constant.

We can write the Hamiltonian in Eq. (1) in dimensionless form if
we express the coordinates and the energy in the following units:
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The total energy of the system involves the following parameters:

particle number N, confinement power n and the anisotropy parameter
α: 0 → 1. All the results are given in dimensionless units. To obtain the
minimum energy configuration (global minimum), we used the
Hamiltonian in Eq. (2) to minimize the energy of the system. For this
end, we followed the Monte Carlo simulations technique firstly used in
Ref. [33]. To be confident that we have found the ground state
configurations, we run the MC subprogram many times starting with
different random initial configurations. The MC method is extended by
the Newton optimization in order to enhance the accuracy of the energy
and accelerate the convergence towards its minimum value for systems
which have also metastable states.

Once the ground state configuration of the system is calculated, the
normal modes are obtained from the dynamical matrix A defined as:

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟A = .

H
x x

H
x y

H
y x

H
y y

∂
∂ ∂

∂
∂ ∂

∂
∂ ∂

∂
∂ ∂

i j i j

i j i j

2 2

2 2

The elements of A consist of second derivative of the energy given
by Eq. (2) with respect to particles coordinates xi,yi. The eigenvalues
and the eigenvectors of the dynamical matrix A are calculated with an
accuracy of 10−9 using QR-Hessenberg algorithm [34]. Actually, for a
system with N particles we obtain exactly N2 modes as a solution of the
following linear system:

Aχ λχ ω χ→ = → = →2 (3)

χ x x y y→ = ( , … , , …. )N N
T

1 1 and ω2 are eigenvectors and squared eigen-
frequencies of the system, respectively.

Fig. 1. the dependence of the eigenfrequency spectrum on the anisotropy parameter α for different confinement powers: a n( ) = 2, b n( ) = 3, c n( ) = 4 and d n( ) = 6 for a cluster with N=19

particles.
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