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A B S T R A C T

This study presents a method for using copulas to model the temporal variability of the clear-sky index, which in
turn can be used to produce realistic time-series of photovoltaic power generation. The method utilizes the
autocorrelation function of a clear-sky index time-series, and based on that a correlation matrix is set up for the
dependency between clear-sky indices at N time-steps. With the use of this correlation matrix an N-dimensional
copula function is configured so that correlated samples for these N time-steps can be obtained. Results from the
copula model are compared with the original data set and an uncorrelated model based on zero correlated clear-
sky index data in terms of distribution, autocorrelation, step changes and distribution. The copula model is
shown to be superior to the uncorrelated model in these aspects. As a validation the model is tested with solar
irradiance for two different geographical regions: Norrköping, Sweden and Hawaii, USA. The copula model is
also applied to a set of bins of daily mean clear-sky index and the use of bins is shown to improve the results.

1. Introduction

The variability of solar irradiance on Earth’s surface has an effect on
many solar engineering applications, in particular those involving
photovoltaic (PV) power generation (Lave et al., 2012; Bollen and
Hassan, 2011; Kleissl, 2013; Widén, 2015). By quantifying the solar
irradiance variability, it is possible to improve the design and operation
of power systems where large amounts of distributed PV power might
be injected into the grid (Bollen and Hassan, 2011; Widén, 2015; Lave
et al., 2015). This is useful in order to avoid costly grid reinforcements
(Bollen and Hassan, 2011; Holttinen et al., 2008). When high resolution
data on solar irradiance is not available for certain time periods, or
geographical locations, models that generate synthetic data can be
useful (Bright et al., 2015). This paper extends the literature with a
synthetic irradiance generator, based on a statistical method which has
previously only been applied to spatial solar correlation modeling.

Solar irradiance, normalized via the clear-sky irradiance to the
clear-sky index, has interesting variability on minute to instantaneous
scale (Bright et al., 2015) and for such resolution the clear-sky index
distribution can be modeled as a probability distribution with typically
two or three peaks (Hollands and Huget, 1983; Hollands and Suehrcke,
2013; Munkhammar et al., 2015a; Widén et al., in press-a). Studies on
clear-sky index ramp rates, and general temporal variability, include
Markov-chain modeling (Bright et al., 2015), neural network modeling
(Voyant et al., 2011) and pure sampling from probability distributions

(Munkhammar et al., 2015a,b). Models vary in terms of input data
complexity from utilizing cloud size, coverage and morphology (Bright
et al., 2015; Smith et al., 2017) to analysis of the clear-sky index time-
series (Munkhammar et al., 2015a,b; Munkhammar et al., 2017). A
challenge is to not only obtain an accurate probability distribution, but
to obtain a realistic synthetic time-series of the clear-sky index as well
(Bright et al., 2017). These methods are intended to complement, and at
best, improve on existing irradiation estimates from software, such as
Meteonorm (2017), or irradiance from satellite data, see e.g. Engerer
et al. (2017).

In terms of time-series realism, autocorrelation is a useful measure.
Autocorrelation of the clear-sky index has been studied previously for
instantaneous irradiance (Brinkworth, 1977; Skartveit and Olseth,
1992; Aguiar and Collares-Pereira, 1992; Hansen et al., 2010) and for
step-changes as well (Hansen et al., 2010), where the autocorrelation
function is positive and follows an exponential slope for hour resolution
(Skartveit and Olseth, 1992; Aguiar and Collares-Pereira, 1992;
Hammer and Beyer, 2013), while it has also shown negative values for
minute resolution (Hansen et al., 2010; Perez et al., 2012). Models
utilizing the autocorrelation of the clear-sky index include Brinkworth
(1977), auto-regressive Gaussian (Aguiar and Collares-Pereira, 1992),
neural networks (Voyant et al., 2011) and fractal cloud modeling
(Lohmann et al., 2017). So-called clear-sky index generators are useful,
since they use some existing data set of, e.g., lower resolution or
averaged clear-sky index data to estimate higher resolution data
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(temporal or spatial), see e.g. Bright et al. (2015, 2017), Wegener et al.
(2012), Ngoko et al. (2014), and Grantham et al. (2017). Autocorrela-
tion functions of clear-sky index step changes have also been used in so-
called virtual networks to study the variability of spatially distributed
fleets of PV plants, see (Widén, 2015). This indicates that the auto-
correlation function might be useful for both temporal and spatial solar
irradiance studies.

Regarding spatial solar irradiance variability, copulas have been
used to model the variability of solar irradiance in a spatial network
(Munkhammar et al., 2017; Munkhammar and Widén, 2016). Copula
modeling, being a multivariate statistical method for simulating cor-
related stochastic variables, is an increasingly common method for
modeling correlation between stochastic variables (Nelsen, 2006). It
has been used and described in studies of for example electric vehicle
charging (Lojowska et al., 2012), wind power (Hagspiel et al., 2012),
wave power (Li et al., 2016) and spatial solar irradiance variability
(Munkhammar et al., 2017; Munkhammar and Widén, 2016).

This study develops an autocorrelation-based copula model for
generating synthetic clear-sky index data, including the development of
a model for generating synthetic clear-sky index data for binned daily
mean clear-sky index levels. A copula-based model for quantifying the
temporal variability of the clear-sky index on binned daily mean clear-
sky index has not been done previously. The clear-sky index generator
is, in similarity with for example (Skartveit and Olseth, 1992), based on
utilizing only time-series as input. The model extends this type of
modeling with more extensive autocorrelation statistics.

Daily clear-sky index bins have been used in other studies for gen-
erating synthetic clear-sky index data, in particular (Ngoko et al.,
2014). In this paper the model simulations, and input data set, are
based on minute resolution, where 120 min of each day for 365 days
are used. General copula modeling and its application to temporal solar
irradiance modeling is introduced in Section 2.2.

This study continues the work on correlation modeling of the clear-
sky index in Munkhammar and Widén (2017), Munkhammar et al.
(2017), and Munkhammar and Widén (2016), where the latter two
studies presented models on spatial variability in the clear-sky index by
using copulas and a spatiotemporal data set of the clear-sky index. If
spatial modeling of solar irradiance is modeled under virtual network
assumptions, generated from temporally shifted time-series based on
cloud advection velocity, this model could also directly be used for
spatial irradiance variability studies.

This paper is organized as follows. In Section 2 the methodology and
data are presented, in Section 3 the results are presented and in Section
4 the results are discussed in a wider context.

2. Methodology

The methodology is organized so that the clear-sky index and an
algorithmic description of the method is presented in Section 2.1, the
copula modeling in Section 2.2, the goodness-of-fit statistic used in this
study is presented in Section 2.3, the variability index is presented in
Section 2.4 and the data set is presented in Section 2.5.

2.1. The clear-sky index

In order to focus on the temporal variability of instantaneous solar
irradiance, the clear-sky index is used. Formally, the clear-sky index κ is
defined as the ratio between the measured global horizontal irradiance
(GHI) G t( ) and the estimated global horizontal clear-sky irradiance
G t( )c over time t:

≡κ t G t
G t

( ) ( )
( )

.
c (1)

The temporal copula model developed in this paper is based on the
assumption that the clear-sky index is not dependent on time of day or
season. This assumption can be contested, see for example (Smith et al.,

2017). However, for expected time of day or seasonal variability in
clear-sky index time series, bins of clear-sky index for time of day or
season might be used instead.

Generally, throughout this study, it is assumed that the time-series
of the clear-sky index is approximately stationary, a property of time-
series which means that the joint probability distribution of a set of
equivalently separated data points in a time-series does not change over
time (Koopmans, 1995). If the clear-sky index is not expected to be
stationary, the use of bins for specific time-periods, as mentioned, could
perhaps improve this.

Since the clear-sky index is primarily defined only during daytime,
when >G t( ) 0c , there is a maximum length of each daily vector of
consecutive points of the clear-sky index. In order to have sufficient
data for modeling this prompts the use of clear-sky index for a number
of days (all days in a year in this study), each with the same length
vector. Time, t, has resolution of minutes in this study.

Based on the assumption that the clear-sky index time-series for
each day is stationary and a data set of clear-sky index for a number of
days is available, the main model of the paper is based on the following
algorithmic steps, where the copula modeling steps are described in
detail in Section 2.2, see also (Munkhammar et al., 2017; Munkhammar
and Widén, 2016; Nelsen, 2006) for more information.

1. Obtain a clear-sky index data set for N data points on M days, thus
generating an ×N M data set.

2. Estimate the autocorrelation function of the clear-sky index for each
day, generating a data set of size ×N M .

3. Compute the mean autocorrelation function, for N steps, over all M
days, generating a vector of the mean autocorrelation function of
size N.

4. Define a correlation matrix, of size ×N N , from the N mean auto-
correlation function values.

5. Define a copula based on the empirical distribution of the clear-sky
index data set for N data points on all M days and the autocorrela-
tion-based correlation matrix.

6. Generate, with the copula model, M number of synthetic correlated
clear-sky index time-series with N data points each.

The concepts of these steps will be clarified, in a formal sense, in the
following section. The proposed copula model is validated by com-
paring the synthetic copula-generated data sets with:

• Original clear-sky index data set of daily time-series. (The data set.)

• Generated uncorrelated daily data sets of clear-sky index time-
series. (The uncorrelated model.)

The latter of these, the generated uncorrelated clear-sky index time-
series, is the special case of the copula model with zero autocorrelation
for non-zero lag, rendering the correlation matrix an identity matrix.
This model is equivalent to a model of random sampling of the clear-sky
index probability distribution and will generally be called the un-
correlated model in this study, since it lacks temporal correlation, which
makes it equivalent to conventional probability distribution clear-sky
index models (similar to the models used in e.g. Hollands and Suehrcke
(2013) and Munkhammar et al. (2015a)). In spatial correlation mod-
eling, the uncorrelated model was studied in for example
(Munkhammar et al., 2017).

In addition to applying the copula model to mean autocorrelation
function over all days (in step 3), a copula model is made for each bin of
daily mean clear-sky index as well. The daily mean clear-sky index
(calculated for the =N 120 data points for each day) was binned in five
bins equally separated on the interval [0,1]. Then a mean autocorrela-
tion function for the clear-sky index was obtained for all days within
each bin. The algorithmic steps were then performed for each binned
data set.

In terms of machine learning, it is customary to divide up training
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