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a b s t r a c t

In this paper I propose a new model for representing the formation energies of multicomponent crys-
talline alloys as a function of atom types. In the cases when displacements of atoms from their equilib-
rium positions are not large, the proposed method has a similar accuracy as the state-of-the-art cluster
expansion method, and a better accuracy when the fitting dataset size is small. The proposed model has
only two tunable parameters—one for the interaction range and one for the interaction complexity.

� 2017 Elsevier B.V. All rights reserved.

1. Introduction

Accurate computational prediction of properties of alloys from
their composition is one of the outstanding problems of rational
materials design. Emerging applications, such as the high-
entropy alloys (HEAs) [1], pose new challenges to computational
materials methods. HEAs are defined as alloys with five or more
constituent elements in equal or close to equal proportions [1]. A
large number of elements leads to high configuration entropy of
the solid solution phase and hence stabilizes it. Owing to this, HEAs
possess many unique mechanical properties [2–4]. Accurate com-
putational prediction of the mixing enthalpy and configuration
entropy would be very instrumental in studying HEAs, as it is hard
to experimentally explore different compositions of five or more
elements due to combinatorial complexity. The state-of-the-art
methodology of computationally assessing the stability of
multicomponent crystalline alloys is based on cluster expansion
[5–8], allowing to fit formation energies of binary systems over
the entire range of compositions, ternary and quaternary systems
[9–12] over, typically, some subrange of the composition range,
and quinary systems at specific points of the composition range
[13].

Cluster expansion belongs to a class of data-driven interatomic
interaction models, along with machine learning interatomic
potentials [14–17]. Data-driven models assume a flexible func-
tional form of the interaction energy with many (hundred or more)
free parameters that are fitted from the quantum-mechanical data.

The major drawback of cluster expansion is the ‘‘relaxation error”
[8] which refers to low ability of cluster expansion to account for
changes in mixing enthalpy related to the displacements of atoms
to their equilibrium positions due to, for instance, the mismatch in
their atomic radii. This is probably the reason why cluster expan-
sion is not very successful in handling systems with a large number
of components.

In this paper I propose a new approach to accurately represent-
ing and fitting the formation energies of alloys with a large number
of elements. The new approach does not directly resolve the ‘‘re-
laxation error” issue, but is shown to have a comparable or better
performance than cluster expansion in cases when the ‘‘relaxation
error” is low. The approach is based on partitioning the energy into
contributions of the atomic environments and representing these
contributions with low-rank multidimensional tensors [18]. The
proposed model has only two adjustable parameters, the range of
the interatomic interaction and the upper bound on the tensor
rank, the latter controls the number of free parameters in the
model. The idea of a low-rank representation of functions of the
atomic environments was also pursued in [19].

2. Interatomic interaction

I consider the following model of a crystal. Let the undeformed
positions of atoms be AZ3, where Z3 is the lattice of all points with
integer coordinates and the matrix A sets the actual crystal struc-
ture and dimensions. For example, a face-centered cubic (f.c.c.)
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lattice with constant a is defined by A ¼
0 a=2 a=2
a=2 0 a=2
a=2 a=2 0

0
@
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Each atom n 2 AZ3 is displaced by xðnÞ 2 R3 from its reference posi-
tion n and is of the type rðnÞ 2 f1; . . . ;mg.1 Let X � AZ3 be a com-
putational domain (supercell) repeated periodically in the entire
space. Then the degrees of freedom of the atomistic system are
x ¼ xðnÞ and r ¼ rðnÞ for each n 2 X and the interaction energy is
eE ¼ eEðx;rÞ. I will refer to this as an on-latticemodel of a crystal, since
the atoms are indexed by their undeformed position in an ideal lat-
tice. This is in contrast with, for example, interatomic potentials,
such as the embedded atom method (EAM) or the machine learning
based ones [14–17], that do not relate atoms to their undeformed
positions.

Unless we want to model defects, the displacements x can be
eliminated from the model. Often, it is assumed that the atoms
are at (or near) their relaxed positions and hence

EðrÞ :¼ min
x

eEðx;rÞ: ð1Þ

This model is good for sampling different distributions of atoms to
the lattice sites and hence, e.g., estimating the configuration
entropy of an alloy with a known lattice (for which the atomic dis-
placements are not dramatic).

The atoms are assumed to interact only with their closest envi-
ronment characterized by the cut-off distance Rcut and the interac-
tion neighborhood comprised of all vectors r1; . . . ; rn 2 AZ3 whose
length is less than Rcut. Hence, the energy of interaction of these
atoms is postulated to be

EðrÞ ¼
X
n2X

Vðrðnþ r1Þ; . . . ;rðnþ rnÞÞ; ð2Þ

where V is called, by analogy with the off-lattice case, the
‘‘interatomic potential”. Essentially, V is an m�m� . . .�m;

n-dimensional tensor that defines the interaction model (2). The
goal is to fit this model to the ‘‘true” quantum-mechanical model
given by EqmðrÞ. Without loss of generality it can be assumed that
EqmðrÞ ¼ 0 whenever all rðnÞ are equal—in this case EqmðrÞ is called
the formation energy of r.

The fitting is done on a set of K atomistic configurations
rðkÞ; k ¼ 1; . . . ;K , given together with their true energies Eqm rðkÞ� �

.
Then, the sought V is obtained by minimizing the mean-square
functional

1
K

XK
k¼1

����E rðkÞ� �� Eqm rðkÞ� �����
2

: ð3Þ

This is a linear regression problem on the multidimensional tensor
V.

The typical datasets quoted in the literature have a few hun-
dreds of configurations, whereas, for example, for an f.c.c. crystal
even for two species (m ¼ 2) and 12 nearest neighbors (n ¼ 13)
the problem (3) has mn ¼ 8192 unknown parameters fitting which
already seems intractable. Accounting, however, for physical sym-
metries (i.e., enforcing V to be invariant with respect to the f.c.c.
crystal symmetry space group) reduces the number of unknowns
to 288 and the problem becomes tractable. However, if the number
of species increases to m P 3 then the number of unknowns
becomes of the order of 105 or more, which necessitates further
reduction in the number of unknowns. Below I show that the so-
called low-rank tensor representation for V successfully reduces
the number of unknowns in the regression problem and yields
an efficient way of accurately fitting the formation energies.

3. Formation energy representation

3.1. Low-rank Tensors

I first review the concept of low-rankmatrices and tensors. Con-
sider an m�m matrix M ¼ Mði; jÞ, where i; j 2 f1; . . . ;mg. The
matrix has rank r or less if it can be represented as

Mði; jÞ ¼
Xr

‘¼1

u‘ðiÞv ‘ðjÞ;

where u and v are the scaled singular vectors ofM. As a natural gen-
eralization, we can say that a tensor V has rank r if

Vðr1; . . . ;rnÞ ¼
Xr

‘¼1

uð1Þ
‘ ðr1Þ; . . . ;uðnÞ

‘ ðrnÞ ð4Þ

for some uð1Þ
‘ ; . . . ;uðnÞ

‘ . It is known that the set of tensors of the form
(4) is not a closed set, i.e., a limit of a sequence of low-rank tensors
may be a high-rank tensor. This can be illustrated, for example, by
taking a simple one-body energy Vðr1; . . . ;rnÞ ¼ uðr1Þ þ � � � þ
uðrnÞ which is a rank-n tensor, but it can be approximated with
an arbitrary accuracy by the following rank-two tensor:

ð1þ �uðr1ÞÞ; . . . ; ð1þ �uðrnÞÞ � 1
�

� uðr1Þ þ . . .þuðrnÞð Þ:

Due to this, the low-rank tensors might not behave well when iter-
atively solving an optimization problem.

I will therefore use an alternative version of low-rank tensors
that is free from this problem. Namely, I will use the so-called ten-
sor train (TT) representation [18] defined by

Vðr1; . . . ;rnÞ ¼ Að1Þðr1Þ; . . . ;AðnÞðrnÞ; ð5Þ

where each AðiÞ ¼ AðiÞðriÞ is an ri-dependent matrix of size ri�1 � ri,
and r0 ¼ rn ¼ 1. The rank of this representation is defined as
�r :¼ maxiri. I will call the model (5) the low-rank potential (or
LRP). The LRP has about nm�r2 free parameters, which is much less
than mn as was before using the low-rank assumption.

3.2. Fitting the interatomic potential

I thus assume that the interatomic potential V has the form (5),
where, after Rcut is fixed, �r is the only parameter controlling the

accuracy of the model. The r-dependent matrices AðiÞ are the
unknown parameters of the model that are found by fitting to
the ab initio data. Totally, there is Oðnm�r2Þ parameters. It should
be noted that (5) is not invariant with respect to the space group
of the cubic lattice, G, consisting of 48 linear space transformations
g 2 R3�3 that map AZ3 into itself. The mean-square functional (3) is
therefore adjusted to

J :¼ 1
48K

X
g2G

XK
k¼1

����E g rðkÞ� �� �� Eqm rðkÞ� �����
2

: ð6Þ

The training (fitting) problem is hence:

find Að1Þ
; . . . ;AðnÞ minimizing J subject to ð2Þ and ð5Þ:

To solve this optimization problem, it should be noted that the
functional J is quadratic in E, the latter is linear in V, and V is linear

in each AðiÞ. I hence use the alternating least squares (ALS) algo-
rithm (see, e.g., [20]), consisting of taking an initial guess for all

AðiÞ and then updating AðiÞ in an iterative manner until convergence.
Each iteration consists of n subiterations, where in the i-th subiter-

ation J is minimized with respect to AðiÞ while freezing AðjÞ
; j– i. The

latter is a standard quadratic optimization problem which is
1 In the cluster expansion literature the degrees of freedom are typically denoted

by rðnÞ, following the notation of the electron spin.
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