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a b s t r a c t

In this work, we proposed a Cauchy-Born rule (CBR) based multiscale model to study mechanical prop-
erties of amorphous materials. In this work, we combine a coarse-grained Parrinello-Rahman (CG-PR)
method and the Multiscale Cohesive Zone Model (MCZM) method to model the Lennard-Jones (L-J) bin-
ary glass and amorphous silicon (a-Si) solid. The proposed CG-PR method applies the CBR to a represen-
tative volume element of an amorphous material with representative microstructure pattern, whose side
dimension is about twice of the cutoff distance of interatomic interaction. Numerical simulations were
carried out, and it is found that CG-RP method can reproduce the stress-strain relations extrapolated from
large scale MD simulations for both L-J binary glass as well as amorphous silicon (a-Si).
The CG-PR method is then combined with MCZM method to simulate failure process of amorphous

materials. We found that (1) the CG-PR method can capture the history-dependent inelastic stress-
strain relation in amorphous materials, and (2) the CG-PR enhanced MCZM method can simulate both
brittle and ductile fracture in both a-Si solid and L-J binary glass. Moreover, the multiscale methodology
developed here may be extended to study mechanical properties of a variety of other non-crystalline
materials.

� 2017 Elsevier B.V. All rights reserved.

1. Introduction

The Cauchy-Born rule (CBR) is basically a kinematic assumption
on atoms motions in crystalline materials. Utilizing the CBR
assumption, one can develop multiscale methods to construct
macroscale constitutive models for crystalline materials, which
are informed by atomic or molecular information at microscale.
Historically, Cauchy assumed that the macroscale deformation
motion and the atomistic movement in multiplying scale factor.
This concept was further extended by Born who introduced macro-
scopic deformation gradient as a linear transformation of position
vectors in the reference configuration to describe atom arrange-
ments [1]. By assuming that both kinematic motions in macroscale
and microscale are affine deformation, many multiscale models
have been developed to establish constitutive models for various
crystalline solids by utilizing with interatomic interaction poten-
tials, e.g. [2–4] among others.

In specific, because that the Cauchy-Born rule assumes uniform
deformation in crystalline solids, we can estimate atom positions r
in deformed configuration simply as ri ¼ F � Ri, where F is the

deformation gradient, and Ri is referential coordinate of atom.
For example, the local form of the quasi-continuum (QC) method
[2,5] uses the interpolation field among the representative atoms
to describe a continuous atomistic displacement field, which pro-
vides an estimate for each atom’s displacement in the domain.
Multiscale Cohesive Zone Model (MCZM) [4,6] applies the same
technique to a MD unit cell consisting of multiple atoms, which
is assigned to each quadrature point inside an (finite) element.
Since the unit cell is embedded in each quadrature point of a finite
element, we can use it to evaluate both constitutive relation as well
as the cohesive law at that material point. This procedure provides
great advantage to evaluate stress-strain relation for crystalline
solids, especially for single crystals. This is because that in each ele-
ment one only needs to calculate stress at the locations of a few
quadrature points. As a result of such simplification, computational
cost is greatly reduced to simulate material behaviors at macro-
scale based on microscale information. For example, as the Bravais
lattice, both face-centered (FCC) and body-centered cubic (BCC)
crystals have only one atom in their Wigner-Seitz cells. When eval-
uating stress at one quadrature point, one only needs to calculate
atomistic interaction around that atom, which are only involved
with a few dozen neighboring atoms. For non-Bravie lattices, for
example the cubic diamond crystal, its lattice structure may be
considered as a pair of interpenetrating FCC lattices, thus it is also
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possible to apply CBR by adding additional degree of freedom that
represents the distance between two atoms inside its Wigner-Seitz
cell [6,7].

Based on this technique, a number of multiscale methods have
been developed for crystalline materials whose lattices resemble
the diamond crystal lattice such as silicon or other semiconductor
crystals e.g. [2,8,9]. On the other hand, the Cauchy Born rule has
been extended to include nonlinear deformation by considering
the contribution of higher order deformation gradients. For exam-
ples, Sunyk and Steinmann have applied the higher order Cauchy-
Born rule in crystalline solids with inhomogeneous deformation by
considering the second order deformation [10]. CBR has also been
applied to membrane sheets of graphenes, thin plates of mutilayer
graphenes, and nanowires by introducing the so-called exponential
CBR that takes into account the curvature effect in deformation
mapping [11,12]. In order to distinguish bulk crystal and crystal
surface region, Park et al. proposed the concept of the surface
CBR [13], and they also applied the method to study surface effect
on silicon [14]. Khoei et al. further extended the idea to take in
account of corner and edge effects on microscale silicon [15]. Li
et al. have applied up to fourth order CBR to describe different
types of crystal defects to study dislocation dynamics [16].

Contrary to single crystal materials, studies of multiscale mod-
eling for amorphous materials are relatively limited, despite of the
fact that there exist a large variety of amorphous materials, such as
glasses, ceramics, amorphous semiconductors and various polymer
materials, in engineering applications. This is largely due to the
complexity and difficulty in amorphous material modeling [17].
Most of amorphous material modelings are restricted at the
mesoscale level by using the homogenization methodology in
micromechanics [18], for example, using the approach of Eshelby’s
equivalent inclusion method [19], which assumes a homogeneous
material with equivalent eigenstrains corresponding to heteroge-
neous material. For instance, Liu and Sun employed the method
to estimate effective elastic stiffness and yield strength of amor-
phous nanocomposites [20].

However, recently, Albaret et al. attempted to connect
micromechanics approach with molecular dynamics approach by
combining the Eshelby inclusion method with molecular dynamics
(MD) simulations to study amorphous silicon material [21]. Vala-
vala et al. also tried to predict hyperelastic continuum constitutive
relation for Polyimide and Polycarbonate based on MD simulations
[22]. Other efforts have been made for multiscale modeling of
amorphous polymers. The Pseudo-Amorphous Cell (PAC) method
employs representative volume elements (RVE) to model amor-
phous materials, in which atom displacements are related to the
cell deformation without assuming continuous displacement field
by using so-called transformation matrix operator for small defor-
mation regions [23–25]. The RVE approach in micromechanics is
also applied to amorphous polymetric material by coupling molec-
ular dynamics calculations with the finite element calculations
[26]. Almost of all these studies adopt micromechanics homoge-
nization scheme to build a hierarchical modeling, but no CBR tech-
nique has ever been involved. To the best of the authors’
knowledge, the research on using CBR to non-crystal materials is
exiguous [17,27].

It is fair to say that so far there have been no systematic studies
on how to apply CBR based multiscale methods to model amor-
phous materials, in terms of extrapolating macroscale constitutive
relations based on atomistic information. Even though CBR may be
a limited approach to model amorphous materials, it might be still
useful to utilize its simplicity and low-cost to model amorphous
materials. Therefore in this study we hope to examine the possibil-
ity as well as limitation on how to use CBR modeling amorphous
materials, and compare it with other multiscale methods and the
molecular dynamics approach. In particular, based on CBR, we have

developed a coarse-grained Parrinello-Rahman (CG-PR) method
that is tailored for dealing with complex microstructure of amor-
phous materials. In this work, we shall mainly focus on how to
use the proposed CB-PR method and the multiscale cohesive zone
method to model amorphous silicon (a-Si) and Lennard-Jones (L-J)
binary glass. This is because that these two models are not only
simple enough for the fundamental study, but also are representa-
tives for amorphous materials. Moreover, a-Si is a typical brittle
material with prototypical amorphous structure though it may
be characterized as a monoatomic material. Furthermore, a-Si is
a material that has a great potential for solar cell [28], thin-film
transistor [29], flexible display, and many other applications. On
the other hand, L-J binary glass is an ideal model for glassy mate-
rials with ductility, such as metallic glasses [30,31] and polymer
network glasses [32].

The paper is organized in five sections. The simulation methods
of MD, coarse-grained Parrinello-Rahman (CG-PR) and MCZM are
described in Section 2. Numerical examples are presented in Sec-
tion 3, in which we compare the simulation results between MD
and CG-PR/MCZM for both a-Si solid and L-J binary glass. By ana-
lyzing the simulation results, we hope to find a general guideline
for application of CBR to amorphous materials. After these exami-
nations, we combined CG-PR method with multiscale cohesive
zone model to simulate fracture of amorphous materials, and the
simulation results are reported in Section 4. Finally in Section 5,
we conclude the study with a few remarks.

2. Simulation methods

In this section, we shall briefly discuss the simulation method-
ologies that are used in this study, which include: molecular
dynamics (MD), the Cauchy-Born based coarse-grained
Parrinello-Rahman (CG-PR) method, and the multiscale cohesive
zone model (MCZM).

2.1. Molecular dynamics simulation

All MD simulations were carried out by using LAMMPS [33].
Amorphous silicon (a-Si) is modeled by using three body Tersoff
potential [34,35] that can be expressed as follows,

VTS
ij ¼ f CðrijÞ½f RðrijÞ þ bijf AðrijÞ�: ð1Þ

In the Tersoff potential, the functions f R; f A are defined as,

f RðrijÞ ¼ A expð�kijrijÞ; ð2Þ
f AðrijÞ ¼ �B expð�lijrijÞ; ð3Þ
and the cutoff function f C is defined as,

f CðrijÞ ¼
1 rij 6 Rij

1
2 þ 1

2 cos pðrij�RijÞ
Sij�Rij

� �
Rij < rij < Sij

0 rij P Sij

8>><
>>: : ð4Þ

In order to take into account the three body interaction, the Tersoff
potential has a parameter bij (see Eq. (1)). It explicitly depends on
the location of the third atom k, which is expressed as follows,

bij ¼ ð1þ bnfnijÞ
�1
2n ð5Þ

fij ¼
X
k–i;j

f cðrikÞgðhijkÞ ð6Þ

gðhijkÞ ¼ 1þ c2

d2 �
c2

d2 þ ðh� cos hijkÞ2
: ð7Þ

For more information on the parameters of the Tersoff potential,
readers may consult [35]. In the rest of the paper, we may refer
the amorphous silicon as a-Si solid.
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