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a b s t r a c t

Phonon spectral energy density (SED) is widely used in phonon mode analysis, from which the phonon
dispersion curve and phonon lifetime of each vibration mode can be obtained. In practice, SED can be cal-
culated through time–space 2D Fourier transforms of the velocity fields of atoms from molecular dynam-
ics (MD) simulations (Maruyama, 2003) [1]. However, the resolution of phonon SED is not satisfactory for
limited-size systems. Although previous works have highlighted this problem, a quantitative relationship
is still lacking for how the resolution of phonon SED changes with the size of the simulation domain. In
this work, we analytically derived the relationship using the convolution theorem in Fourier transforms.
Moreover, molecular dynamics simulations were performed in a 1D atom chain to prove our derivation.
Then, we drew a conclusion to guide the simulation settings in the MD simulations to achieve a reason-
able resolution at the end of this article.

� 2017 Elsevier B.V. All rights reserved.

1. Introduction

Phonon behavior is of fundamental importance in studies of
material properties because of its coupling with other quasi-
particles. To analyze the behavior of phonons, the phonon spec-
trum plays an important role. It provides us with the energy of
different phonon modes in momentum space. Several different
methods have been proposed to calculate the phonon spectrum.
For example, a force constants matrix can be successfully obtained
using density functional perturbation theory [2] (DFPT) and the
dielectric method [3]. Another method called the frozen phonon
method [4] is also frequently used in phonon spectrum calcula-
tions, such as PHONOPY, and it is highly compatible with existing
first principles calculation packages.

However, most of the aforementioned methods are static, zero-
temperature methods, and the anharmonicity is not completely
included. In order to obtain the phonon property at different tem-
peratures, the first-order perturbation theory [5] and renormaliza-
tion theory [6] was used. Researcher also analyzed phonon
property by combining Fourier transform and MD simulation
[1,7]. Due to the anharmonic effect, both phonon frequency and
phonon eigenvector can shift from their harmonic values [8]. Over

the past several years, phonon spectral energy density (SED),
which was used in the study mentioned before [8], has become a
powerful tool in studies of phonon behavior. Because phonon
SED is based on a 2D Fourier transformation of the atomic velocity
fields, it contains the vast majority of information about the
dynamics for different temperatures, including the effect of anhar-
monic terms. With phonon SED, we can calculate the frequency
and the phonon lifetime of each vibration mode of systems with
complex structures at finite temperature. Phonon SED has been
successfully used in the phonon mode analysis of many nanostruc-
tures, e.g., one-dimensional graphyne nanotubes [9], two-
dimensional silicene [10], one-dimensional graphene [11], and so
forth. Moreover, phonon SED can also be performed even in disor-
dered systems [12] without the phonon mode eigenvectors. In
these simulations, the authors studied different sized domains;
one of the reasons is to is to achieve sufficient resolution of SED
in momentum space [13]. Although this point was well recognized
by previous researchers,they only investigated sufficiently large
samples to avoid smearing of the spectrum in their studies. Fur-
thermore, the criterion for the ‘sufficient size’ was not mentioned.

Therefore, in our work, we analytically established the relation-
ship between the size of the simulation domain and the resolution
of the SED. This derivation was performed with the help of convo-
lution theory. Moreover, molecular dynamics studies of series of
single atom chains with different lengths were conducted, and
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the following SEDs were obtained from the velocity fields of such
atoms. In this simple case, the corresponding broadening of the
spectrum was extracted, and they fit quite well with our analytical
formula. Finally, we attempted to provide the expression for the
‘sufficient size’ criterion.

In the calculation of the phonon SED function U, the following
formula is used [14]
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where k is the wave vector in momentum space,x is the frequency,
s0 is the total integration time, and a denotes the x, y, and z direc-
tions. There are N unit cells in the system, with n atoms each. mb is
the mass of the bth atom in the unit cell. _uaðl; b; tÞ is the a compo-
nent of the velocity of the bth atom in the lth unit cell. H is defined
as i½k � r0ðlÞ �xt�, where r0ðlÞ is the equilibrium position vector of
the lth unit cell. Apparently, the calculation of the phonon SED
can be understood as a Fourier transformation of the velocity field
of all the atoms in the sample, and thus, the phonon SED reflects
the strength of vibrations in a material.

In Fig. 1, we present the phonon spectral energy densities for
one-dimensional chains that are 10-nm long (Nz ¼ 20) and 50-
nm long (Nz ¼ 100). The atomic velocities were obtained from
NVE MD simulations with periodic boundary conditions at a tem-
perature of 1 K using LAMMPS. The interactions between atoms
(mass equal to 14.02 g/mol) are simply set as harmonic bondings
with bond coefficients of 5.9 and 5.0 in real units in LAMMPS.
The time step of the MD simulations is 1 fs, and we extracted

velocities every 20 time steps. The sampling rate of 0:05fs�1 was
determined according to the sampling theorem, which shows that
the sampling rate should be two times greater than the highest
phonon frequency to avoid aliasing. Prior to sampling, the system
needs to be fully relaxed and achieve equilibrium. The phonon
SED can be fit with a Lorentzian function in the frequency domain
[14], as in Eq. (2). If one want to calculate the phonon life time, the
total integration time in the phonon SED calculation should be
more than five times greater than the longest phonon lifetime
smax, which can be determined from the above fitting; see Eq. (3):

Uðk;xÞ ¼ I

1þ x�x0
c

� �2 ð2Þ

smax ¼ 1
2c
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where k is the wave vector, I is the peak magnitude, x0 is the fre-
quency at the peak center, and c is half-width at half-maximum.
Fig. 1 clearly shows that the resolution of the phonon SED of the
100 atom chain is higher than that of the 20 atom chain. In our sim-
ulation, our total sampling time is set as 1 ns which is much smaller
than the longest phonon lifetime (theoretically, infinitely large)
because there is no need for phonon lifetime in our research. To
understand how the size of the simulation domain affects the reso-
lution of phonon SED, a schematic diagram is presented in Fig. 2.

To calculate the velocity field from an infinite sample, the sim-
ulation domain should be infinitely long in principle. This is impos-
sible in real calculations, and it can be avoided by introducing
periodic boundary conditions (PBCs). With the help of PBCs, the
information of an infinite sample can be obtained from a limited-
size sample. At the same time, the information that we obtained
from the simulation domain, the velocity field for example, can
be understood as the information from the original infinite sample
times a rectangular function with the same length as the simula-
tion domain, shown in Fig. 2(a) and (b). In other words, we multi-
ply the velocity field function by a rectangular window function in
a space domain of width L, with a value of 1 inside the box and 0
outside of the box, as shown in Fig. 2(b).

The rectangular window function can be expressed as follows:

wðxÞ ¼ 1 : x 2 ½0; L�
0 : else

�

Fig. 1. The picture on the left is the phonon SED of a 10-nm-long (Nz ¼ 20) one-
dimensional chain at a temperature of 1 K. The picture on the right is the phonon
SED of a 50-nm-long (Nz ¼ 100) one-dimensional chain at a temperature of 1 K. The
shading indicates the magnitude of phonon SED for wave vector k and frequencyx.
It is obvious that the resolution of phonon SED changes with the size of the system.
Although a hamming window was used to reduce spectrum leakage, these leakage
are still visible for low frequency.

Fig. 2. (a) The simulation box under periodic boundary conditions. The length of
the box is L. (b) A rectangular window function in real space. (c) The Fourier
transform of the rectangular window function.
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