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a b s t r a c t

The sink strength is an important parameter for the mean-field rate equations to simulate temporal
changes in the micro-structure of materials. However, there are noteworthy discrepancies between sink
strengths obtained by the Monte Carlo and analytical methods. In this study, we show the reasons for
these differences. We present the equations to estimate the statistical error for sink strength calculations
and show the way to determine the sink strengths for multiple traps.

We develop a novel, very fast Monte Carlo method to obtain sink strengths. The results show that, in
addition to the well-known sink strength dependence of the trap concentration, trap radius and the total
sink strength, the sink strength also depends on the defect diffusion jump length and the total trap
volume fraction. Taking these factors into account, allows us to obtain a very accurate analytic expression
for the sink strength of spherical traps.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

To understand and control the changes in the physical and
mechanical properties of materials during ageing or ion irradiation,
requires a long time and length scale simulation technique,
knowledge of the ion irradiation produced defects, and a complete
description of how the formed defects diffuse and interact with
each other.

The only simulation techniques that are able to fulfil the long
time and length scales are the mean-field rate equations (RE) and
kinetic Monte Carlo (KMC) methods. The KMC is a stochastic
simulationmethod, where all the dynamic properties and reactions
for all involved defects have to be known. The strengths of this
method include the ability to take into account expected and un-
expected correlated events, e.g. close Frenkel pair annihilation.
However, the time step for the KMC method is inversely propor-
tional to the sum of frequencies of all processes, which is a disad-
vantage in some cases. For instance in tungsten, where the self-
interstitial atom moves very fast [1], the KMC time step, even
with only one SIA present, might be of the order of 10�11 s. Clearly,
this restricts the accessible time and defect concentrations for the
method.

In the mean-field rate equations (RE) [2,4,5] the defects and
other objects are treated as concentrations (number/vol) which
interact with each other in space and time. This interaction is
described by a parameter called the sink strength, which de-
termines the probability for mobile defects to interact with any
other point or extended defect in the material. The sink strength
has to be determined for each mobile defect separately and it is
proportional to the square of the inverse mean distance covered by
the defect before it is absorbed, trapped or annihilated. The sink
strength is the single most important parameter in RE simulations
and is a function of the geometry, size and concentration of sinks,
dimensionality of the diffusion, and, as we will show in this study,
the sink strength also depends on the diffusion jump length of the
defect.

Sink strengths have been determined for various symmetric
traps including spherical traps, dislocation lines and loops, and
grain boundaries [6e9]. Monovacancies, vacancy clusters, self-
interstitial atoms and impurities are usually counted as spherical
traps. For arbitrarily shaped traps, methods like the Monte Carlo
(MC)method has to be used to determine the sink strength. TheMC
method seems in principle straight forward to use, but previous
studies have shown some inconsistencies for this method. Malerba
et al. [7] have noticed that the MC method gives smaller sink
strengths than the analytic equation for spherical traps in the low
trap volume fraction region. On the contrary, for large trap volume* Corresponding author.
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fractions, the sink strengths simulated by the MCmethod are much
larger than the analytical ones. Similar results are observed by Hou
et al. [10], where the analytic equation is modified to give better
agreement with the sink strengths obtained by the MC method.

In this study, we show the reasons for the discrepancy between
sink strengths obtained analytically and by MC. We introduce a
new, much faster MC concept to simulate sink strengths. We
further show how the equation of analytical sink strength can be
modified so that it can be used in defect and micro structure sim-
ulations with any trap volume fraction and defect jump length.

2. Results

The definition of the sink strength includes the inverse mean
distance squared a defect diffuses before it gets trapped. The sink
strength calculatedwith theMonte Carlo (MC)method is expressed
as [11]:

k2 ¼ 2,Dim

l2〈N〉
; (1)

where Dim is the dimension for the defect diffusion, l is the jump
length and 〈N〉 is the mean number of jumps the defect makes
before it is trapped: 〈N〉 ¼PM

i¼1Ni∕M, where M is the number of
defects simulated and Ni is the number of defect i jumps before it is
trapped. In Appendix A, we show how the statistical error for
determining the sink strength by the MC method depends on the
number of defects M simulated as follows:

Dk2 ¼ k2
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As a rule of thumb, to obtain the sink strength with an error less
than 1% more than 104 defects need to be simulated, and for an
error less than a per mille (1 ‰) more than 106 defects are needed,
see Fig. A.10.

In this study, we place one trap in the middle of the simulation
cell, which is either spherical or cubic. The trap concentration ct is
controlled by choosing an appropriate simulation cell volume V,
ct ¼ 1/V. The trap volume fraction becomes: VFt ¼ 4pR3t ∕ð3VÞ. One
defect at a time is placed at a random position in the cell, excluding
the trap volume. The defect diffusion jumps are counted until it
jumps inside the trapping radius Rt, then a new defect is inserted in
the cell. At least M ¼ 106 defects are simulated for each sink
strength calculation, resulting in the statistical error of about 1 ‰.

2.1. Improving MC sink strength simulation speed

The MC method for determining the sink strength of systems
with quite small trap volume fractions is very inefficient [7]. The
reason for this is that the defect can make incredibly large number
of jumps before it finds a trap (k2 ¼ 6∕½〈N〉l2�), see Eq. (1). Thus, to
find the sink strength for a trap with, let's say, a trap radius
Rt ¼ 0.4 nm and concentration of ct ¼ 10�7nm�3 (k2z4pctRt), for a
statistics of 106 defects, with jump length l ¼ 0.1 nm, we would
need about 106,6∕ð4p10�70:4,0:12Þz1015 jumps.

In this study, we develop a new and fast MC method to simulate
sink strengths, the details are given in Appendix B. The method
takes advantage of the fact that if theminimum distance to any trap
for the diffusing defect is known (this has to be checked anyway
during the MC simulation), the defect cannot be trapped during the
following Nj ¼ floorðDmin∕lÞ diffusion jumps, where Dmin is the
minimum distance to any trap and l is the jump length. Thus,
instead of making Nj diffusion jumps, we can make one jump that

gives statistically the same diffusion distance as the Nj individual
diffusion jumps would give. This new concept gives surprisingly
large improvement in the simulation times. To compare the normal
MC with the new (N-jump) MC method, we determine the average
cpu-time per defect during sink strength simulations for seven
different trap volume fractions VFt: 10�1, 10�2, 10�3, 10�4, 10�5, 10�6

and 10�7. The trapping radius Rt is 0.5 nm for all simulations. Two
different jump lengths l ¼ 0.2 and 0.005 nm are chosen for every
simulation. The choice of the latter very small jump length will be
obvious in the next section where we compare the MC results with
analytical sink strengths. Fig. 1 shows the impressive improvement
in the simulation times for the N-jumpMCmethod. For rather large
trap volume fractions VFt above 10�3 and jump length to trapping
radius ratio l∕Rt ¼ 0.4, bothmethods give similar simulation times.
This is expected because the distance to the closest trap is never
very large, thus the N-jumpMCmethod is seldomly used. However,
for smaller trap volume fractions the improvement in simulation
time is remarkable. Smaller l to Rt ratio yields to even more
impressive improvement in computational times. For l to Rt ratio of
5�10�3, the N-jump MC method is faster for all trap volume frac-
tions, being a staggering more than four orders of magnitude faster
at VFt ¼ 10�7. The new method enables sink strength simulations
for smaller trap volume fractions with better statistics. The
resulting sink strengths for both normal and N-jump MC methods
are the same within the statistical error. All the following sink
strengths in this study have been calculated with the developed N-
jump MC method.

2.2. Comparison of the analytical and MC sink strengths

The analytical sink strength for spherical traps under 3D diffu-
sion limit with trap radius Rt and concentration ct is given by the
recursive equation by Brailsford and Bullough [6]:

k2 ¼ 4pRtct
�
1þ Rt

ffiffiffiffiffi
k2

p �
: (3)

In the small trap concentration limit the Eq. (3) is usually
truncated to the first order (n ¼ 1), k2 ¼ 4pRtct . For usual trap
concentrations higher order sink strengths (n ¼ 2;3;4;…) are
calculated recursively as k2n ¼ 4pRtctð1þ Rt

ffiffiffiffiffiffiffiffiffiffi
k2n�1

q
Þ. For n ¼ ∞ the

solution can be found directly from Eq. (3) as

Fig. 1. Comparison of cpu-time per defect for the usual and the developed N-jump MC
methods for two different jump length to trapping radius ratio and trap volume
fractions between 10�7e10�1. The lines are given as guides to the eye.
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