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A B S T R A C T

For the first time a quantum mechanics based theoretical description of acoustic-phonon shear horizontal
modes in a class of piezoelectric media is proposed. The quantized acoustic modes that are needed in the
transition from the microscale to the nanoscale are derived for a resonator with geometries of interest in
optoelectronics and nanoelectronics. The acoustic-phonon frequency dispersion relations are obtained quantum
mechanically for odd and even symmetry shear horizontal modes. It is shown that the derived dispersion
relations are identical to the previously reported dispersion relations obtained classically as is expected. For
each symmetry, the phonon-mode amplitude is derived in terms of the energy of the quantized vibrational
mode, which is of great importance for modelling carrier-acoustic phonon interactions. Moreover, the product
of quality factor and frequency (Q f. ) have been estimated for AlN and GaN resonators by using the anharmonic
phonon scattering theory. Furthermore, the electrical surface perturbation in the piezoelectric nanoresonator is
studied and the resulting resonance frequency shift is determined.

1. Introduction

During the past decade, the use of nanoelectromechanical systems
(NEMS) has been explored extensively for a vast range of applications
including high frequency filtering, sensing, wireless components, signal
processing and data storage [1–4]. The resonance frequency in mechanical
resonators increases as device dimensions shrink from themicroscale to the
nanoscale due to the reduction of the effective mass [5–7]. In transitioning
frommicroelectromechanical systems (MEMS) to NEMS through shrinking
the dimensions of the systems from micrometers down into the nanometer
range many advances and interesting applications ranging from quantum
measurement to biotechnology can be expected [8]. Recent developments
in nanotechnology and MEMS have extended the scope of biomedical
applications using NEMS [9]. In general, as the device dimensions
shrinking the device physical properties become more susceptible to the
external perturbations. This ultrasensitivity of NEMS is offering a wide
range of unprecedented functionalities for applications such as a superior
methodology for proteomics, mass spectrometry and pressure assisted
switches [8,10,11]. This new branch of electronic systems uses the
integrated-circuits (ICs) manufacturing methodology to fabricate the fully
integrated on-chip, miniature actuators and sensors, with a fast-growing
range of applications. From the previous literatures, scaling down from

MEMS to NEMS not only enhance the resonance frequency of the system
but also it will lead to the lower energy consumption, higher integration
densities, and thus much smaller footprint [12].

Thus, to obtain high resonance frequencies of the order of sub-
terahertz, minimizing the size of the resonator down to a few nanometers,
while maintaining a sufficiently high quality factor of the resonance is
required [13].

To design high frequency nanomechanical resonators, it is of great
importance to gain an understanding of the phononic behavior of these
nanoscale structures, as phonon properties in nanostructures generally
differ significantly from those in microstructures.

In particular, acoustic nanoresonators are of significant interest for
providing extremely high resonance frequencies while preserving a
relatively high resonance quality factor (Q) sufficient for high frequency
applications [1,14]. The effect of size reduction when scaling from the
microscale to the nanoscale to achieve high resonance frequencies of
the order of a terahertz, on the acoustic response of the nanoresonators
has attracted considerable attention.

In recent years, enormous advances in nanotechnology have enabled
the fabrication of nanostructures and increased the feasibility of acoustic
wave confinement [15]. As a result of their smaller dimensions, these
structures portend applications at higher frequencies than those for
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microscale structures. In addition, nanofabrication offers access to resonant
frequencies reaching the sub-terahertz range, which can be used in single-
chip or monolithic RF signal processing systems. Despite of these wide
applications of acoustic-phonon confinement, only a few analytical attempts
have been made to study the properties of confined acoustic phonons in
nanoresonators [16–19].

To the best of our knowledge, this paper is the first to report on the
quantized acoustic shear horizontal modes that are required in the
transition from the microscale to the nanoscale. This paper, for the first
time, provides the quantized acoustic shear horizontal (SH) modes for
a piezoelectric nanoresonators which is of importance for modelling
and understanding charge carrier-acoustic phonon interactions. Due to
the piezoelectric coupling, the charge carrier-acoustic phonon interac-
tion has a non-zero contribution from both transverse acoustic (TA)
phonons and longitudinal acoustic (LA) phonons [20]. Piezoelectric
crystal plates are of significant interest, due to the low required
actuation voltages for the excitation and therefore have been studied
extensively in the literature [21]. In this study, the theory of the
thickness mode piezoelectric nanoresonator is developed by quantizing
the general un-quantized classical equations given and used by Auld
[22] in microscale application and modified where needed to make the
results meaningful and usable on the nanoscale. Shear horizontal mode
propagation in an X-cut hexagonal elastic plate is analyzed to provide
an analytical solution for general quantized acoustic nanoresonators.

In the following sections, first the formulations for the particle
displacement is provided. Then, the Christoffel equations and the SH
wave solutions are derived. Then, the elastic continuum mechanics
model along with a suitable quantization procedure are used to
determine the quantized acoustic-phonon modes of the desired struc-
ture. The Q f. product of AlN and GaN are calculated and presented,
and finally the electrical surface perturbation in the nanoresonator
which has the significant interest for sensing application is studied and
the resulting resonance frequency shift, is derived and calculated.

2. Theory and formulation

As depicted in Fig. 1, a piezoelectric X-cut hexagonal plate of a 6 mm
crystal of infinite length in a z direction having a small thickness of b in the
y direction, with a x-directed infinite width, which has two perfectly
conducting electrodes separated from both surfaces of the plate by a small
gap of thickness, h, including the coordinate system to be used is
considered. The surfaces of the plate are stress free and the plate has a
relatively small enough thickness for the quasi-static approximation to be
valid. In this problem only the x-polarized particle displacement is
considered due to the fact that it is the only component that is electrically
coupled to the produced potential [22]. Considering the boundary condi-
tions, the un-quantized acoustic SH displacement wave solutions propagat-
ing in the y direction are calculated as [19,22]:

⎧⎨⎩U
A ky ν

A ky ν
=
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where k = νπ
b is the wave vector, and As is the unknown wave amplitude.

To find the propagation constants and the modal field distributions,
the governing equations of the problem along with the associated
boundary conditions, based on Auld's [22] notations are formulated as
follows:

(i) Maxwell's electromagnetic equations for a lossless medium with
no source, where J ρ=0, =0e e
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where E is the electric field, B is the magnetic field, H is the
magnetic field strength, and D is the electric displacement field;

(ii) Acoustic equations
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where T , is the stress tensor field, P is the particle momentum
field, and F is the body force distribution;

(iii) Constitutive equations for an anisotropic hexagonal piezoelectric
crystal (class 6 mm) [23]
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where μ0 is the vacuum magnetic permeability constant, S= u∇s is the

strain tensor, ϵxx
s ,ex5, and cE

44 are the dielectric strain constant, piezo-
electric stress constant, and elastic stiffness constant under constant
electric intensity, respectively. For a piezoelectric medium with no body
force sources (F = 0), Christoffel equations can be derived by manip-
ulating the governing equations,
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In this problem, in the presence of two conductive electrodes, the

elastic stiffness increases from cE
44 to c c= +E e

44 44 ϵ
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5

2
, due to the piezo-

electric stiffness phenomenon [23,24].
By substituting the quasi-static approximation result, E∇ × =0, into

the Christoffel equations, while considering the source free medium
ρ( =0e ), where D∇. = 0 in (6), the SH wave solutions within the plate
are derived as follows,
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D( ) = 0y SH (12)

while the electrostatic wave solutions within the plate, are as follows,

φ A y B= + ,e e e (13)

T e A( ) = ,xy e x e5 (14)
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s
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where Ae and Be are the unknown wave amplitudes.
Outside the plate, where U = 0 and φ∇. ∇. = 0, the electrical

potential solutions are represented by,
Fig. 1. (Colour online) Infinite piezoelectric X-cut hexagonal crystal (class 6 mm)
resonator considered for quantization of acoustic SH modes.
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