### Accepted Manuscript

Rapid *in-situ* Synthesis of Nanocrystalline Magnesium Silicide thermo-electric compound by Spark Plasma Sintering

P. Vivekanandhan, R. Murugasami, S. Kumaran

| PII:           | S0167-577X(17)30470-6                          |
|----------------|------------------------------------------------|
| DOI:           | http://dx.doi.org/10.1016/j.matlet.2017.03.125 |
| Reference:     | MLBLUE 22364                                   |
| To appear in:  | Materials Letters                              |
| Received Date: | 13 February 2017                               |
| Revised Date:  | 19 March 2017                                  |
| Accepted Date: | 22 March 2017                                  |



Please cite this article as: P. Vivekanandhan, R. Murugasami, S. Kumaran, Rapid *in-situ* Synthesis of Nanocrystalline Magnesium Silicide thermo-electric compound by Spark Plasma Sintering, *Materials Letters* (2017), doi: http://dx.doi.org/10.1016/j.matlet.2017.03.125

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

## ACCEPTED MANUSCRIPT

# Rapid *in-situ* Synthesis of Nanocrystalline Magnesium Silicide thermo-electric compound by Spark Plasma Sintering

P.Vivekanandhan<sup>1</sup>, R.Murugasami<sup>1</sup>, S.Kumaran<sup>1\*</sup>

<sup>1</sup>Green Energy Materials and Manufacturing Research Group, Department of Metallurgical and Materials Engineering, National Institute of Technology, Tiruchirappalli – 620015, Tamil Nadu, India.

#### \*Corresponding E-Mail: kumara@nitt.edu

#### Abstract

× CC

Magnesium Silicide (Mg<sub>2</sub>Si) is the one of the most attractive and promising green thermoelectric material to convert the heat in to electricity in the mid temperature range (RT to 600°C). However, synthesizing of Mg<sub>2</sub>Si compound through liquid and solid state processing carries several challenges such as processing time, inhomogenous stoichiometry and phase purity. The alternative method is demonstrated by rapid *in-situ* synthesis of pure nano-crystalline Mg<sub>2</sub>Si doped with Bi (0-0.025at.%) by spark plasma sintering (SPS). XRD and electron microscopy studies confirm the formation of Mg<sub>2</sub>Si compound and EDS confirm chemical and doping homogeneity. The superior power factor of  $11\mu$ V/cm-k<sup>2</sup> is achieved at 550°C.

Keywords: Magnesium silicide; Thermo-electric material; Semiconductor; Spark plasma sintering; Electron microscopy

Download English Version:

## https://daneshyari.com/en/article/5463854

Download Persian Version:

https://daneshyari.com/article/5463854

Daneshyari.com