Vacuum 145 (2017) 169-173

Contents lists available at ScienceDirect

## Vacuum

journal homepage: www.elsevier.com/locate/vacuum

## Short communication

# Decomposition of solid alumina in the presence of carbon in vacuum



VACUUM

Yuebin Feng <sup>a, \*</sup>, Hailan Hou <sup>a</sup>, Baomin Yang <sup>a</sup>, Bin Yang <sup>b</sup>, Futing Zi <sup>a</sup>

<sup>a</sup> Faculty of Science, Kunming University of Science and Technology, Kunming, 650500, China <sup>b</sup> National Engineering Laboratory of Vacuum Metallurgy, Faculty of Metallurgy and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China

#### ARTICLE INFO

Article history: Received 21 May 2017 Received in revised form 28 August 2017 Accepted 30 August 2017 Available online 1 September 2017

Keywords: Al<sub>2</sub>O<sub>3</sub> Decomposition Al<sub>4</sub>O<sub>4</sub>C Al<sub>4</sub>C<sub>3</sub> Vacuum

### ABSTRACT

The decomposition of solid Al<sub>2</sub>O<sub>3</sub> in the presence of C was researched at 1873 K–2073 K in vacuum, using  $\alpha$ -Al<sub>2</sub>O<sub>3</sub> powders as the raw materials and the graphite crucible as C source. There was no direct contact between the Al<sub>2</sub>O<sub>3</sub> and the C. The results showed that the Al<sub>2</sub>O<sub>3</sub> decomposed into gaseous species, and the C making up the graphite crucible was reacted to form CO. The coupled reaction was proposed: Al<sub>2</sub>O<sub>3</sub> decomposed into gaseous Al-containing species (mainly Al and Al<sub>2</sub>O) and O<sub>2</sub>, and then C reacted with O<sub>2</sub> to form CO to maintain low O<sub>2</sub> partial pressure, making the decomposition of solid Al<sub>2</sub>O<sub>3</sub> in vacuum possible. With a decrease in temperature, the gaseous products Al, Al<sub>2</sub>O and CO formed the condensates containing a lot of fibrous materials. The condensates mainly consisted of Al<sub>4</sub>O<sub>4</sub>C, Al<sub>4</sub>C<sub>3</sub>, Al<sub>2</sub>O<sub>3</sub> and Al, and the content of Al<sub>4</sub>O<sub>4</sub>C was the highest.

© 2017 Elsevier Ltd. All rights reserved.

The carbothermal reduction of  $Al_2O_3$  in the atmosphere requires high temperatures above about 2273 K, at which the unreacted  $Al_2O_3$  raw material and the Al,  $Al_4C_3$  and  $Al_4O_4C$  products can form a melt. Decreasing the partial pressures of the gaseous products by operating under vacuum or in a gas flow (such as Ar and N<sub>2</sub>) can reduce the required temperature, making the carbothermal reduction of solid  $Al_2O_3$  occur.

The carbothermal reduction of solid  $Al_2O_3$  is involved in the fabrication of some ceramic materials such as  $Al_4O_4C$  [1–3],  $Al_4C_3$  [4,5], AlN [6,7] and AlON [8–10]. So far its mechanism remains controversial.

For a long time, it was widely believed that solid  $Al_2O_3$  directly reacts with C to form Al oxycarbides and carbide ( $Al_2OC$ ,  $Al_4O_4C$  and  $Al_4C_3$ ) [2,11–13].

Nowadays, it has been generally accepted that the carbothermal reduction of solid Al<sub>2</sub>O<sub>3</sub> can generate gaseous Al, Al sub-oxides and CO. The gaseous species containing Al and CO should account for the formation of the deposits/condensates with high content of Al<sub>4</sub>O<sub>4</sub>C and Al<sub>4</sub>C<sub>3</sub> [5,11,14–17]. However, the opinions are divided on how the gaseous species containing Al are formed. One viewpoint was that they are formed from the direct solid-solid reaction between Al<sub>2</sub>O<sub>3</sub> and C [18–20], while another was that they are

formed from the decomposition of Al<sub>2</sub>O<sub>3</sub> [13,21,22].

In our previous experiments on the carbothermal reduction of solid  $Al_2O_3$  in vacuum [15,16], the deposits with high content of  $Al_4O_4C$  and  $Al_4C_3$  were formed on the surfaces of the pressed pellets of  $Al_2O_3$  and C, and the reacted pellets still consisted of  $Al_2O_3$  and C. Furthermore, the interfaces between the residual  $Al_2O_3$  particles and C flakes were clear, and there was no indication that the direct solid-solid reaction occurred. Instead, it was speculated that the gaseous Al and Al sub-oxides might be formed from the decomposition of  $Al_2O_3$  and the deposits should be formed from the gaseous species containing Al and CO.

The decompositions of the metal oxides usually generate pure metal and  $O_2$ , and it was proposed that  $Al_2O_3$  decomposed into gaseous Al and  $O_2$  [13]. Katsov [23] found that the basic vapor components at  $Al_2O_3$  atomization were Al,  $Al_2O$  and AlO, and the relation between these components was determined by the content of  $O_2$ . Accordingly, it was reasonable to deduce that solid  $Al_2O_3$ decomposes to form Al and Al sub-oxides, certainly accompanied by the generation of  $O_2$ . As the gaseous species containing Al in the Al-O-C system mainly include Al,  $Al_2O$ , AlO and  $Al_2O_2$  [24], the possible decompositions of  $Al_2O_3$  are shown as Equations (1)–(4).

$$2Al_2O_3 = 4Al(g) + 3O_2(g)$$
(1)

$$Al_2O_3 = Al_2O(g) + O_2(g)$$
 (2)

*E-mail address*: fenjys@126.com (Y. Feng). http://dx.doi.org/10.1016/j.vacuum.2017.08.043 0042-207X/© 2017 Elsevier Ltd. All rights reserved.

Corresponding author.



$$2Al_2O_3 = 4AlO(g) + O_2(g) \tag{3}$$

$$2Al_2O_3 = 2Al_2O_2(g) + O_2(g)$$
(4)

It is well know that Al is very easy to be oxidized, and thus the decomposition of Al<sub>2</sub>O<sub>3</sub> requires quite high temperatures and low O<sub>2</sub> partial pressures. The equilibrium O<sub>2</sub> partial pressures at 2000 K for Reactions (1)–(4) is  $1.37 \times 10^{-4}$  Pa,  $6.68 \times 10^{-5}$  Pa,  $1.45 \times 10^{-4}$  Pa and  $1.45 \times 10^{-6}$  Pa, respectively, calculated according to Reference [15]. In the presence of a reducing agent C, the C reacts with O<sub>2</sub> to decrease dramatically the O<sub>2</sub> partial pressure, resulting in that the decomposition temperature of Al<sub>2</sub>O<sub>3</sub> decreases significantly, just as Lvov [25] thought in the carbothermal reduction of metal oxides C acted as a role to reduce O<sub>2</sub> partial pressure. The combination of C with O<sub>2</sub> is shown as Equation (5).

$$2C + O_2(g) = 2CO(g)$$
 (5)

Coupling Equations (1)-(4) with Equation (5), the total reactions to form gaseous species containing Al were obtained, as shown by Equations (6)-(9).

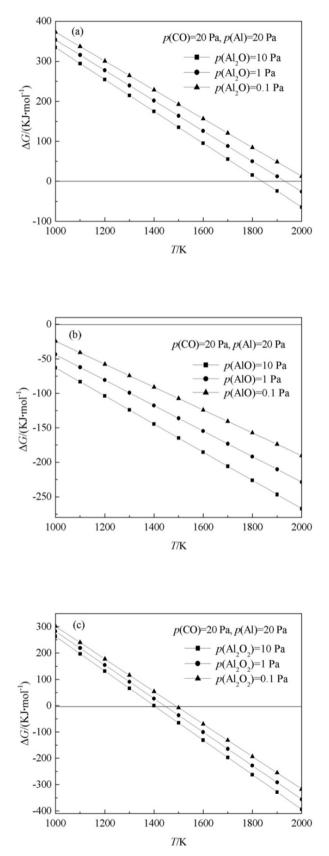
$$Al_2O_3 + 3C = 2Al(g) + 3CO(g)$$
 (6)

 $Al_2O_3 + 2C = Al_2O(g) + 2CO(g)$  (7)

$$Al_2O_3 + C = 2AlO(g) + CO(g)$$
(8)

$$Al_2O_3 + C = Al_2O_2(g) + CO(g)$$
 (9)

The four reactions can be used to represent the carbothermal reductions of  $Al_2O_3$  to form gaseous species containing Al. They cannot occur at temperatures below 2273 K under the atmospheric pressure. This is to say, even if in the presence of C,  $Al_2O_3$  in the solid state cannot decompose. The Gibbs free energy change ( $\Delta G$ ) of them is a function of temperature and the pressures of the gaseous products, and decreasing the pressures can decrease the required temperatures; therefore, they can occur at lower temperatures in vacuum. The thermodynamic analysis demonstrated that the required temperatures for Reactions (6) and (7) are considerably lower than Reactions (8) and (9) at the same total pressure [15].


It was needed to explore the possibility of Al sub-oxides further reacting with C to be reduced to Al. The possible reactions are shown by Equations (10)-(12).

 $Al_2O(g) + C = 2Al(g) + CO(g)$ <sup>(10)</sup>

$$AIO(g) + C = AI(g) + CO(g)$$
(11)

$$Al_2O_2(g) + 2C = 2Al(g) + 2CO(g)$$
 (12)

 $\Delta G$  at reduced pressures is plotted vs temperature (*T*) in Fig. 1, calculated according to References [26,27]. On the condition that the partial pressures of CO and Al are both 20 Pa, Reaction (10) can occur thermodynamically at temperatures above 1839 K and 1932 K at the Al<sub>2</sub>O partial pressure of 10 Pa and 1 Pa, respectively, and cannot occur at temperatures below 2000 K at 0.1 Pa; the lowest temperature required for Reaction (11) is 692 K, 764 K and 852 K at the AlO partial pressure of 10 Pa, 1 Pa and 0.1 Pa, respectively; that for Reaction (12) is 1400 K, 1442 K and 1487 K at the Al<sub>2</sub>O<sub>2</sub> partial pressure of 10 Pa, 1 Pa and 0.1 Pa, respectively and Al<sub>2</sub>O<sub>2</sub> are almost impossible to be formed in Al<sub>2</sub>O<sub>3</sub>-C system at temperatures below 1487 K at practical pressures [15], therefore, in Al sub-oxides only Al<sub>2</sub>O may be stable at temperatures below 2000 K in vacuum. In consistence with this, Heyrman, et al. [28] found that Al, Al<sub>2</sub>O



**Fig. 1.** Δ*G* vs T: (a) Reaction (10); (b) Reaction (11); (c) Reaction (12).

and CO was only vaporizing species in the Al<sub>2</sub>O<sub>3</sub>-graphite system in the temperature range 1200 K–1700 K. Lihrmann [24] proposed

170

Download English Version:

# https://daneshyari.com/en/article/5468204

Download Persian Version:

https://daneshyari.com/article/5468204

Daneshyari.com