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a b s t r a c t

Quantitative interpretation of the electron spectroscopy data requires the information on differential
inverse inelastic mean free paths (DIIMFP) and differential surface excitation probabilities (DSEP). In this
paper, we test an algorithm of extracting DIIMFP and DSEP from reflected electron energy loss spectra
(REELS) and photo-electron spectra (PES) in which the desired functions are parametrized on the base of
a classical Lorentz oscillator. Unknown parameters are found by using the fitting procedure. To account
for surface excitations, the investigated samples are considered as multi-layer systems. Simulations of
REELS and PES are performed by making use of the partial intensity approach. The partial intensities for
the reflection function and the photo-electron density flux are computed on the base of the invariant
imbedding method. Extracted DIIMFPs and DSEPs are compared with those obtained by other authors.
Finally, REELS and PES spectra for Be, Mg, Al, Si, Nb and W are computed using the retrieved DIIMFPs and
DSEPs, and compared with the experimental spectra. All comparisons show good agreement.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Knowledge of the inelastic scattering parameters of solids is
important for quantitative understanding of the energy loss pro-
cess. The differential inverse inelastic mean free path (DIIMFP) and
the differential surface excitation probability (DSEP) give the dis-
tribution of energy losses per unit path length in an individual
inelastic collision in bulk and surface layers of solids, respectively.
They are the main quantities characterizing inelastic scattering in
solids. However, in practice, only integral quantities such as the
inelastic mean free path (IMFP) and the electron stopping power
are available in spectroscopic databases (e.g. NIST database by
Ref. [1]). Studies involving linear response theory [2] can predict
only the general shape of the DIIMFP, while using more sophisti-
cated approaches (e.g. based on density functional theory [3]) is
complicated for real atomic structures. Bearing that in mind, it
seems to be more feasible to extract information on the DIIMFP and
DSEP from experimental optical data [4] or REELS spectra rather
than to compute them from basic physical principles.

A convenient numerical framework for the REELS spectra
analysis is the partial intensity approach [5,6], in which a REELS
spectrum is given by the weighted sum of multiple cross convo-
lutions of DIIMFP and DSEP functions. The corresponding weight-
ing factors are referred to as ‘‘partial intensities’’. To obtain DIIMFP
and DSEP from REELS, the latter has to be deconvolved to filter out
multiple scattering effects. Several techniques have been proposed
to retrieve DIIMFP and DSEP from REELS spectra employing the
partial intensity approach. A direct numerical inversion scheme
was proposed by Ref. [7], and [8] to extract DIIMFP from a REELS
spectrum. The P1-approximation was used to compute the partial
intensities. The main drawback of this scheme is that it does not
take into account surface excitations. As a result, the extracted
‘‘effective’’ DIIMFP (being some kind of mixture of the actual
DIIMFP, DSEP and their cross-convolution) can have negative values
in the region corresponded to the cross-convolution of DIIMFP and
DSEP. Further, this approach was extended by Werner (e.g., see
Refs. [9,10]) to two-layer systems. There, DIIMFP and DSEP are
retrieved from a pair of REELS spectra by reversing the bi-variate
power series in Fourier space. A similar technique has been pro-
posed by Ref. [11] which employs the REELS expansion through
partial intensities only in the original space.* Corresponding author.
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Note, that all direct numerical inversion schemes above are
severely ill-posed, i.e. the noise in the spectrum results in physically
irrelevant peaks in the shapes of extracted DIIMFP and DSEP. To
regularize the inversion [12], proposed to fit extracted functions to
the Drude-Lindhard model and in this way to get a physically-
consistent result.

The intent of this paper is to test a method for DIIMFP and DSEP
retrieval from REELS and PES spectra inwhich the desired functions
are parametrized on the base of the classical Lorentz oscillator.
Unknown parameters of the model are found by means of the
fitting procedure. An important part of our retrieval algorithm is
the fast yet accurate method for partial intensity computations. It
employs ideas of [13,14], and [15], and relies on the numerical so-
lution of the invariant imbedding equations for scattered electrons.
The forward simulations for REELS and PES are performed in the
same framework, so that the DIIMFP functions extracted from
REELS and PES can be cross-validated.

The rest of the paper is organized as follows. In Section 2, we
briefly review the partial intensities approach and describe a
technique for computing partial intensities using the invariant
imbedding method. Section 3 provides basic relations for
reflection and transmission functions in the case of multi-layer
systems. A description of the retrieval algorithm set-up follows
in Section 4. Here, DIIMFP and DSEP functions are extracted from
REELS and PES spectra for a set of materials (Be, Mg, Al, Si, Nb
and W). Section 5 summarizes the present work and outlines
future tasks.

2. Evaluation of partial intensities for single layers

In this section we consider a single layer illuminated by the
electron beam or the X-ray irradiation. Let R(t,D,m0,m,4) be the
reflection function of electrons, i.e. the ratio of the outgoing flux per
unit solid angle per unit energy interval to the incident flux [16],
t¼z/ltot is the dimensionless layer thickness, z is the geometrical
thickness of the layer, ltot¼[n(sinþsel)]�1 is the total mean free path,
n is the concentration of scatters, sel and sin are the elastic and
inelastic scattering cross-sections, respectively, D is the energy loss,
m0 is the cosine of the incident polar angle q0, m is the cosine of the

viewing polar angle q, 4 is the azimuthal angle between incident
and sighting directions, as shown in Fig. 1. Expanding the reflection
function into a Fourier cosine series gives

Rðt;D;m0;m;4Þ ¼
X∞
m¼0

ð2� dm0ÞRmðt;D;m0;mÞcosðm4Þ: (1)

Here dmm0 is the Kronecker delta. Within the partial intensity
approach, the functions Rm can be expanded as follows:

Rmðt;D;m0;mÞ ¼
X∞
k¼0

Rmk ðt;m0;mÞxkinðDÞ; (2)

where x0inðDÞ ¼ dðDÞ is the Dirac function, x1inðDÞ ¼ xinðDÞ is the
probability distribution of the energy loss in a single inelastic
event (also referred to as normalized DIIMFP or NDIIMFP), and
xkinðDÞ is the spectrum of energy losses after k successive inelastic
scattering events. The latter is computed as the k-fold self-
convolution:

xkinðDÞ ¼
ZD
0

xk�1
in ð 3ÞxinðD� 3Þd 3:

In practice, the summation in Eq. (2) is performed up to the K-th
term, where K is the maximum number of inelastic scattering
collisions taken into account. The transmission function
T(t,D,m0,m,4) and the photo-electron flux density Q(t,D,m0,m,4) are
expanded analogously as in Eqs. (1) and (2) providing the partial
intensities Tmk ðt;m0;mÞ and Qm

k ðt;m0;mÞ. To simplify notations,
hereafter we suppress the m-superscript with the dependence on
azimuthal mode assumed. Note, that Rk(t,m0,m), Tk(t,m0,m) and
Qk(t,m0,m) refer to the k-fold inelastically scattered particles, while
R0(t,m0,m), T0(t,m0,m) and Q0(t,m0,m) refer to the elastically scattered
electrons.

Assuming the Poisson stochastic process for multiple energy
losses [17], the energy distribution of electrons with the path
length t is written as

Lðt;DÞ ¼
X∞
k¼0

Lkðt;DÞ ¼
X∞
k¼0

n
expð � tÞ ð1� lÞktk

k!
xkinðDÞ

o
; (3)

where l is the single scattering albedo, and Lk(t,D) is the distribu-
tion of energy losses after k-fold scattering as a function of t [18,19].

To compute partial intensities we adopt the concept of invariant
imbedding, which is due to [20]. He derived an equation for
reflection from a semi-infinite atmosphere by noting that the
reflection function remains unchanged upon addition of a new
layer. This technique was generalized by Ref. [21] for a finite layer.
The extension of this method to the partial intensity approach is
described in Ref. [22]. Derivation of equations for functions Rk, Tk,
and Qk involves the following steps [23]:

1 add an infinitely thin layer to the layer;
2 consider single scattering processes in that layer which

contribute to the change in Rk, Tk, and Qk;
3 express Rk, Tk, and Qk functions for the system ‘‘sample þ layer’’

through corresponding functions for the sample.

The resulting equations for elastically scattered electrons (k¼0)
read as follows:

Fig. 1. Illustration of the experimental geometry. A sample is illuminated by the
electron beam or the X-ray irradiation. Here q0 is the polar angle of incidence, q is the
viewing polar angle, 4 is the azimuthal angle between incident and sighting directions
and j is the scattering angle.
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