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Abstract 

A major challenge of today’s production systems in the context of Industry 4.0 and Cyber-Physical Production Systems is to be flexible and 
adaptive whilst being robust and economically efficient. Specifically, the implementation of motion planning processes for industrial robots need 
to be refined concerning their variability of the motion task and the ability to adaptively deal with variations in the environment. In this paper, 
we propose a reinforcement learning (RL) based, cognition-enhanced six-axis industrial robot for complex motion planning along continuous 
trajectories as e.g. needed for welding, gluing or cutting processes in production. Our prototype demonstrator is inspired by the classic wire loop 
game which involves guiding a metal loop along the path of a curved wire from start to finish while avoiding any contact between the wire and 
the loop. Our work shows that the RL-agent is capable of learning how to control the robot to successfully play the wire loop game without the 
need of modeling the wire or programming the robot motion beforehand. Furthermore, the extension of the system by a visual sensor (a camera) 
allows the agent to sufficiently generalize the learning problem so that it can solve new or reshaped wires without the need of additional learning. 
We conclude that the applicability of RL for industrial robots and production systems in general provides vast and unexplored potential for 
processes that feature variability to some extent and thus require a general and robust approach for process automation. 
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1. Introduction 

In the era of the fourth industrial revolution, frequently 
noted as Industry 4.0, one of the four key requirements of 
Cyber-Physical Production Systems is the ability to react 
adaptively to dynamic circumstances of production processes 
[1,2,3]. 

Motions of industrial robots that are part of a bigger 
production process are commonly programmed in a non-
flexible way and require exact control over the circumstances 
of the motion task. For instance, the motion of a simple pick-
and-place process requires exact knowledge about the position 
of the object to be picked up and about the container in which 
the object is to be placed in. Small deviations of either the 
object or the container would result in process failure, as the 
non-flexible programming of the motion is not able to deal with 
small variations of the environment. This general problem 

gives rise to the question how robots can be enabled to deal 
with such variations of the environment and autonomously 
adapt to them to plan their motion in a flexible way. 

In this paper, we address this question and present a proof 
of concept for an augmentation of an industrial robot with 
cognitive capabilities. This concept is based on the idea to 
provide a robot with sensor technology that allows it to observe 
its environment and to complement it further by an operating 
agent that is able to control the robot and gather experiences 
about its interaction with the environment. Based on those 
experiences, the agent seeks to adapt its behavior and control 
the robot in such a way that the motion task is performed as 
intended.  

We implemented this concept in an exemplary use case 
scenario in which a six-axis industrial robot (UR5 Robot from 
Universal Robots) is controlled by an agent that learned to play 
the wire loop game [4]. The robot autonomously guides a metal 
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loop along the path of a curved wire from start to finish while 
avoiding any contact between the wire and the loop. It is 
enhanced by a visual sensor (a camera) that provides vision of 
the agent’s environment. The agent’s algorithm learns to play 
the game which is modelled as a Markov Decision Process 
(MDP) by means of reinforcement learning (RL) [5,6] and Q-
learning [7] without any domain knowledge, i.e. it does not 
know the concept of a loop or a wire and it does not know what 
its actions do exactly.  

1.1. State of the Art 

The successful application of RL and a variation of 
Q-learning, was previously demonstrated by enabling an agent 
to play board games, e.g. backgammon [8] or even Atari games 
directly from visual sensory input [9,10]. MDPs and partially 
observable MDPs (POMDPS) have been largely used in for 
motion planning in mobile robotics [11,12], autonomous 
planning for unmanned ground and aerial vehicles [13,14] and 
human assisted teleportation [15].  

Recent research has attempted to utilize deep RL to tackle a 
wide variety of continuous motor control problems, e.g. motion 
planning for industrial robots directly from sensory input 
[16,17]. Although these attempts demonstrated the conceptual 
usability of the methods they rely on heavy computational 
effort both in terms of the number of used cores (either CPUs 
or GPUs) and the required computation time which is of the 
order of several days.  

With our approach, we avoid directly processing sensory 
input to decrease the computational effort of the learning 
problem significantly. We utilize a well-approved approach 
from the mobile robotics domain that relies on the 
formalization of the planning problem as an MDP and transfer 
this approach to the stationary robotics domain. We show that 
our agent is able to learn how to play the wire loop game within 
only a few minutes of computation time on a single CPU. 
Furthermore, it is capable of generalizing the learning problem 
within a few hours so that it is able to play the game with wire 
configurations that were not used during the training phase. 
Our results imply that RL-based augmentations for robots 
provide a feasible way to deal with processes that feature 
variability to some extent and thus, in order to be automated, 
require a general and robust approach.  

2. Background 

The presented concept for an augmentation of robots is 
based on RL and the condition to model the learning task at 
hand as a Markov Decision Process allowing to utilize a 
variation of Q-learning, a learning paradigm that has been 
successfully applied to various virtual learning scenarios. 

2.1. Reinforcement Learning and Markov Decision Processes 

Reinforcement learning (RL) is a machine-learning 
paradigm inspired by behaviorist psychology and addresses the 
procedure of how an agent (an animal, a human or even a 
machine) interacts with its environment [5]. It describes the 
problem of an agent that tries to develop a behavioral strategy 
in order to maximize some notion of cumulative reward as a 
result of taking the right actions in any state of its environment 
[6]. Figure 1, left hand side illustrates the underlying state-

action-reward principle of RL problems. In general, these kinds 
of problems can be formalized as MDPs. 

An MDP is a mathematical framework for modeling 
decision making as a discrete time stochastic control process 
[19]. It assumes that the modelled stochastic process possesses 
the Markov property, i.e. the conditional probability 
distribution of each future state depends only on the present 
state and not on the sequence of events that preceded it [20]. 
Figure 1, right hand side illustrates a simple example of an 
MDP with three states and two actions. In order for an agent to 
maximize its reward in the exemplary MDP in Figure 1, right 
hand side, the agent needs to learn that the cumulative reward 
over time can only be maximized when temporary 
punishments, i.e. negative rewards, are accepted. Thus, in 
general, an agent needs to take into account not only immediate 
rewards but also possible future rewards. A single episode 

 of any given MDP forms a finite sequence of states, 
actions and rewards and can be expressed as: 

  

where , ,  represent the i-th state, action and reward that 
is received after performing the action, respectively. The total 
future reward from any time point  is given by: 
 

 
 
where  is the discount factor and models how strongly 
the agent takes future rewards into account. Values close to 0 
will represent a short-sighted strategy as higher-order terms for 
rewards in the distant future become negligible. If the 
environment is deterministic,  can be set to 1 as the same 
actions always result in the same rewards. A good strategy for 
an agent trying to maximize its discounted future reward can 
be learned by means of the Q-learning paradigm. 

2.2. Q-Learning 

Q-learning is a paradigm that can be used to allow an agent 
to find an optimal policy for choosing an action for any given 
finite MDP. In general, a policy is a deliberate system of 
principles to guide decisions or more specifically, a decision 
function that specifies what the agent will do for each possible 
value that it can sense [21]. In contrast to other learning 
paradigms such as SARSA (state-action-reward-state-action), 
Q-learning is an off-policy learner and allows learning from 

Figure 1: (left) Schematic illustration of the RL paradigm. An agent 
interacts with its environment and receives a reward for each action that is 
taken in a specific state of the environment. (right) Schematic illustration 
of a simple, discrete MDP with three states , ,  and two actions , 

. The probability of reaching a state  by taking an action  is given by 
the black number next to the black transition arrows. The reward that is 
given after taking certain actions in certain states is represented by yellow 
arrows. Figure adopted from [18].  
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