
Applied Mathematical Modelling 54 (2018) 82–111 

Contents lists available at ScienceDirect 

Applied Mathematical Modelling 

journal homepage: www.elsevier.com/locate/apm 

A class of upper and lower triangular splitting iteration 

methods for image restoration 

Hong-Tao Fan 

a , b , Mehdi Bastani c , Bing Zheng 

a , ∗, Xin-Yun Zhu 

d 

a School of Mathematics and Statistics, Lanzhou University, Lanzhou 730 0 0 0, PR China 
b Institute of Applied Mathematics, College of Science, Northwest A & F University, Yangling, Shaanxi 712100, PR China 
c Department of Mathematics, University of Mohaghegh Ardabili, 56199-11367 Ardabil, Iran 
d Department of Mathematics, University of Texas of the Permian Basin, Odessa, TX 79762, USA 

a r t i c l e i n f o 

Article history: 

Received 7 April 2016 

Revised 12 August 2017 

Accepted 19 September 2017 

Available online 22 September 2017 

Keywords: 

Augmented linear system 

Upper and lower triangular splitting 

Iteration method 

Convergence analysis 

Image restoration 

a b s t r a c t 

Based on the augmented linear system, a class of upper and lower triangular (ULT) split- 

ting iteration methods are established for solving the linear systems arising from image 

restoration problem. The convergence analysis of the ULT methods is presented for im- 

age restoration problem. Moreover, the optimal iteration parameters which minimize the 

spectral radius of the iteration matrix of these ULT methods and corresponding conver- 

gence factors for some special cases are given. In addition, numerical examples from image 

restoration are employed to validate the theoretical analysis and examine the effectiveness 

and competitiveness of the proposed methods. Experimental results show that these ULT 

methods considerably outperform the newly developed methods such as SHSS and RGHSS 

methods in terms of the numerical performance and image recovering quality. Finally, the 

SOR acceleration scheme for the ULT iteration method is discussed. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction 

Images are usually degraded by blur and noise during image acquisition and transmission. Image restoration is a widely 

studied problem in several applied scientific areas, such as removing the noise from magnetic resonance images (MRIs), 

chest X-rays, and digital angiographic images in medical imaging [1,2] , restoration of aging and deteriorated films in engi- 

neering [3] , restoring degraded images obtained by telescopes or satellites in astronomy [4] , restoration of degraded images 

in optical systems [5] , and many other areas (see [6,7] ). Restoration is a process that involves reconstructing or recovering a 

degraded image using a priori knowledge related to the degradation phenomenon. The input–output relationship of image 

restoration can be written as follows [8] : 

g(x, y ) = H [ f (x, y )] + n (x, y ) , (1.1) 

where H is a degradation operator, f ( x , y ) is the original image, g ( x , y ) is the degraded image (recorded image), and n ( x , y ) 

is additive noise. It can be shown that if H is a linear and space-invariant operator, then Eq. (1.1) can be written as the first 

type Fredholm integral equation 

g(x, y ) = 

∫ + ∞ 

−∞ 

∫ + ∞ 

−∞ 

h (x − ξ , y − η) f (ξ , η) d ξd η + n (x, y ) , (1.2) 
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where h ( x , y ) is usually known as the point spread function (PSF) and n ( x , y ) is independent of the spatial coordinates. In 

this paper, the PSF is assumed to be known. The discretization of (1.2) leads to the following formulation: 

g(x, y ) = 

+ ∞ ∑ 

k = −∞ 

+ ∞ ∑ 

l= −∞ 

h (x − k, y − l ) f (k, l ) + n (x, y ) . (1.3) 

It has been shown that the Eq. (1.3) can be expressed in the matrix–vector equation as [8] 

g = A f + η, (1.4) 

where A is a blurring matrix of size n 2 × n 2 and f , η and g are n 2 -dimensional vectors representing the original image, noise, 

and blurred and noisy (degraded) image, respectively. Given some assumptions of the value outside the field of view (FOV) 

are known as boundary conditions (BCs). The structure of the blurring matrix A depends on the used BCs. Zero, periodic, 

reflexive, antireflective and mean are five known BCs which have been widely used in the literature. In the zero BCs, it is as- 

sumed that the outside of FOV is zero (black). The proposed assumption leads to block Toeplitz with Toeplitz blocks (BTTB) 

for blurring matrix A . The periodic BCs is implemented by considering the periodic extension of data in the outside of FOV. 

In this BCs, the matrix A has the block circulant with circulant blocks (BCCB) structure. It is shown that the matrix–vector 

multiplications are effectively computed by fast Fourier transforms (FFTs) in zero and periodic BCs [7] . Reflecting the FOV 

data to outside leads to the reflexive BCs. In this BCs, the matrix A has block Toeplitz-plus-Hankel with Toeplitz-plus-Hankel 

blocks (BTHTHB) structure. It is shown that for the symmetric PSF, the two-dimensional discrete cosine transform (DCT-III) 

can be applied to diagonalize the blurring matrix A [7] . The antireflective BCs is constructed by the antireflection of FOV 

data to outside. In this BCs, the blurring matrix structure is block Toeplitz-plus-Hankel-plus-rank-2-correction. The discrete 

sine transform (DST-I) can be used to diagonalize the coefficient matrix A for the symmetric PSF [9] . The mean BCs can 

be viewed as an adaptive antireflection. This BCs reduces the ringing effects and keeps the C 1 continuity. The Kronecker 

product approximations method has been presented to implement the image restoration process with different BCs such 

as whole-sample symmetric BCs, reflective BCs, antireflective BCs and mean BCs [10–13] . Since the proposed approximation 

does not require the symmetry condition of PSF, we apply it to implement the computations in the mean BCs [13] . 

In general, since the linear system (1.4) is ill-conditioned, to reduce the number of iterations when using the pre- 

condition technique with iteration methods, the standard approach to preconditioning cannot be used. One approach for 

preconditioning such ill-conditioned problems is to construct a matrix P that clusters the large singular values around one, 

but leaves the small singular values alone, one can see [14] for more details. In this paper, the Tikhonov regularization 

method [14–16] is used to solve this linear system, by transforming it into the following equivalent problem: 

min 

f 
|| A f − g|| 2 2 + μ2 || L f || 2 2 , 

where 0 < μ < 1 is a penalty parameter and L is an auxiliary operator and chosen as the identity matrix. Other effective 

techniques for solving image restoration problems, one may refer to [17–20] . To attain its minimum, we turn to solve the 

following normal equation 

(A 

T A + μ2 I) f = A 

T g, (1.5) 

which is equivalent to the 2 n 2 -by-2 n 2 linear system [
I A 

−A 

T μ2 I 

]
︸ ︷︷ ︸ 

¯K 

[
e 
f 

]
︸︷︷︸ 

x̄ 

= 

[
g 
0 

]
︸︷︷︸ 

b̄ 

, (1.6) 

where e = g − A f . It is worth noting that the matrix A arising from image restoration problem (1.4) is highly structured 

and severely ill-conditioned, having the property that the singular values decay to, and cluster at zero. Thus, to accelerate 

the rate of convergence with the case L � = I , we can use two BCCB matrices P A and P L which are the approximation of 

matrices A and L , respectively, to precondition the corresponding normal system (A 

T A + μ2 L T L ) f = A 

T g, where P A = F ∗�A F 

and P L = F ∗�L F denote the FFT of corresponding matrices and the elements of diagonal matrices �A and �L are made up 

of eigenvalues of P A and P L , respectively. Additionally, by recasting equivalently the original system (1.4) , employing the 

Tikhonov regularization method, into the 2 n 2 -by-2 n 2 linear system (1.6) , the magnitude of singular values (i.e., the be- 

haviour of ill-conditioned) of latter system can be greatly improved. Then the precondition technique is therefore considered 

in the present paper. The detailed theoretical analysis concerning the singular values of coefficient matrix ¯K is given in the 

Appendix part. The linear system (1.6) can be regarded as a special case of augmented systems, for which many efficient 

iteration methods have been presented in the literature. Examples of such methods include Uzawa-type methods [21–29] , 

Hermitian and skew-Hermitian splitting (HSS) methods [30–34] , matrix splitting iterative methods [35–37] , relaxation 

iterative methods [38] , restrictive preconditioners for conjugate gradient (RPCG) methods [39,40] , Krylov subspace iterative 

methods combined with block-diagonal, block-tridiagonal, constraint, SOR and HSS preconditioners [41–44] , iterative null 

space methods [45,46] and the references therein. 

Recently, based on the HSS iteration method [48] , Lv et al. [49] established a special HSS (SHSS) iteration method, 

which is different from the HSS iteration method, for solving the linear system in image restoration problem (1.6) . Sub- 

sequently, Aghazadeh et al. [50] split the Hermitian part H = 

1 
2 (A + A 

T ) of A as sum of two matrices G and P , where G is 
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