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a b s t r a c t 

Equations of nonlinear acoustic wave motion in a non-classical lossy medium are used to 

derive generalised formulas describing the phenomena of reflection and transmission. In- 

tegral, non-local operators that are caused by the nonlinear effects in wave propagation 

and occur in reflection and transmission formulas are given in a form in which classical 

linear reflection and transmission coefficients are explicitly separated. Numerical calcula- 

tions are performed for a simplified, one-dimensional wave travelling in a lossless medium. 

These simplifications reveal the pure effect of the impact of nonlinearities on the reflec- 

tion and transmission phenomena. We consider adjacent media with different properties 

to illustrate various aspects of the problem. In particular, even if two media have the same 

linear impedance and the same material modules of the third order, we observe an ex- 

plicit effect of the nonlinearity on the reflection phenomenon. The theoretical predictions 

are confirmed qualitatively by numerical calculations based on the finite difference time 

domain method. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction 

Linear models of sound propagation in non-homogeneous media (see [1] ) are sufficient for explaining the reflection and 

transmission phenomena used in classical ultrasound imaging (USG). Images are created in the real time from the radio 

frequency (RF) signals coming back to a transmitter after penetrating internal body organs. Discontinuities in the acoustic 

properties of materials cause peaks in the RF signals that are reflected from the boundary of different tissues. Indeed the 

variations in the acoustic impedances of the tissues inside the human body allow the visualisation of organ boundaries 

in the USG images. In recent decades different methods of quantitative ultrasound imaging (QUS) or parametric imaging 

(PI) (see [2] ) have been successfully applied to find new diagnostically valuable markers for the identification of differ- 

ent tissue structures. Nonlinear models are considered when high intensity ultrasound, particularly high intensity focused 

ultrasound (HIFU), is studied (for example, in ultrasound surgery, hyperthermia, lithotripsy, the excitation of microbubble 

contrast agents, and elastography imaging (shear wave elastography) [3–5] ). The nonlinearity of the behaviour of media 

causes the high pressure portion of the wave to travel faster than the low pressure portion, resulting in the distortion of 

the shape of the wave. This change in waveform leads to the generation of harmonics, multiples of the fundamental or 

transmitted frequency, from the tissue. A tissue harmonic image often has better resolution than a conventional ultrasound 

image, see [6] . The standard time domain partial differential equation models can describe the effect of the nonlinearities 
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Fig. 1. The waves in the two-layered media. 

of wave propagation and the effect of classical viscous wave attenuation. The classical absorption model is based on the 

inclusion of viscosity and thermal conduction in the equations of propagation, to yield an acoustic absorption term that is 

proportional to the frequency squared. However, the absorption mechanisms in soft biological tissue are significantly more 

complex relations. They lead to experimentally observed attenuation in the form of a power law of the frequency with an 

exponent ranging from 0.5 to 2 (see [7] ). Nonlinear wave propagation in a medium with anomalous attenuation has been 

modelled by Kuznecovs type of nonlinear equation with the special non-classical absorption term in [8] . This non-classical 

absorption term has been proposed in the form of an operator that is non-local in space and in time. Alternatively, frac- 

tional acoustic wave equations can be applied to model the non-classical absorption phenomena [9–11] . Here, the reflection 

and transmission of nonlinear acoustic waves propagating in a lossy medium is based on the results given in [12] and [13] , 

and is studied in the recently published papers [14] and [15] . The generalised reflection/transmission coefficients having the 

form of reflection and transmission operators are retained. To begin with, we discuss all the physical requirements needed 

to obtain the reflection/transmission operators, which repeats previous work. In addition, we use the uniform description of 

the fluid and solid continuum. Next, for one-dimensional plane wave propagation, we derive the reflection and transmission 

operators. We also introduce the explicit dependence on the Mach number and on the norm of the non-local absorption 

operator in all the relationships under consideration. Finally, we perform numerical experiments to explain the qualitative 

and quantitative character of the nonlinear reflection and transmission phenomena. Some of the results of this work were 

presented by Janusz Wojcik and Barbara Gambin at the 13th International Conference on Dynamical Systems Theory and 

Applications, December 7–10, 2015, in Łód ́z, Poland and were published in [15] . 

2. Modelling of reflection and transmission 

2.1. Basic relations 

Wave propagation in linear solids/fluids remaining in a thermodynamic equilibrium state is uniquely described with two 

a priori known physical properties, namely the density and the elasticity of the medium. The elasticity properties are defined 

by a tensor (a fourth-order elasticity tensor with specified symmetries and a second-order tensor with spherical symmetry, 

for solid and fluid media, respectively), whereas the density is a scalar for a solid as well as for a fluid medium. If these 

properties are constant in time and space then the wave propagates in a homogeneous elastic continuum, which, in the 

case of a solid, can generally be anisotropic. Discontinuities in density and/or elasticity defined on the boundary between 

two different adjacent continua lead to the reflection/transmission phenomena. If the displacements from the equilibrium 

position cannot be considered infinitely small (which is the linear case) and/or the reaction to the applied forces is no 

longer proportional to the gradient of displacements, we move to nonlinear theories of continua. We restrict our study to 

a medium disturbed by a plane longitudinal acoustic wave, under the assumption that the displacements u of the material 

particles compared to the wavelength l b are estimated by the following inequality u/ l b ≤ v b /(2 πνb l b ), where νb , v b are the 

characteristic frequency and velocity of the wave, respectively, which should be a priori known and are defined in the fixed 

space position, denoted symbolically by the point x b in the one-dimensional case depicted in Fig. 1 . In addition, we have 

v b / (2 πνb l b ) = P b / (ρ0 c 0 2 πνb l b ) = q/ (2 π) ≡ P b / (2 πρ0 c 
2 
0 
) = v b / (c 0 2 π) , where l b denotes the wavelength, c 0 = νb l b the speed 

of sound and ρ0 the density of the medium, respectively and q the acoustic Mach number. The elasticity of the medium in 

the considered case, given by Lame constants λ0 and 2 μ0 , is linked to the wave speed by ρ0 c 
2 
0 

= λ0 + 2 μ0 . The assumption 

about the weak reaction of the medium to motion, or the pressure level estimation, is stated as follows: 

P b ; v b ≡ max 
t 

(∣∣P b (t ′ ) 
∣∣; ∣∣v b (t ′ ) 

∣∣), 
where P b ( t ) is the characteristic pressure at a fixed characteristic point (for example at the source location) of the distur- 

bance. The above estimation is also valid for any more spectrally complex acoustic disturbances. The generation of acoustic 

disturbances with a Mach number of order q ∼ 0.01 or greater requires sources or focusing systems that produce a high 

intensity of power or a high pressure level, for gases of 0.001 MPa, for liquids of tens of MPa and for solids of a few GPa. 

In what follows continuous media are regarded as nonlinear in reaction to acoustic disturbances (which are gradients of 

the scalar potential only). Below we introduce the explicit dependence in all relations on the Mach number q . The initial 
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