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a b s t r a c t 

The traditional polynomial expansion method is deemed to be not suitable for solving 

two- and three-dimensional problems. The system matrix is usually singular and highly 

ill-conditioned due to large powers of polynomial basis functions. And the inverse of the 

coefficient matrix is not guaranteed for the evaluation of derivatives of polynomial basis 

functions with respect to the differential operator of governing equations. To avoid these 

troublesome issues, this paper presents an improved polynomial expansion method for the 

simulation of plate bending vibration problems. At first, the particular solutions using poly- 

nomial basis functions are derived analytically. Then these polynomial particular solutions 

are employed as basis functions instead of the original polynomial basis functions in the 

method of particular solutions for the approximated solutions. To alleviate the condition- 

ing of the resultant matrix, we employ the multiple-scale method. Numerical experiments 

compared with analytical solutions, solutions by the Kansa’s method, and reference so- 

lutions in references confirm the efficiency and accuracy of the proposed method in the 

solution of Winkler and thin plate bending problems including irregular shapes. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction 

In recent decades, simulations of plate bending vibrations are of considerable technological importance to the product 

design process [1–3] . The plate bending problems have consequently attracted considerable attentions from scientific and 

engineering aspects, and varieties of approximate methods have been developed. The use of mesh such as the finite element 

method (FEM) [4,5] is a basic characteristic of the traditional approaches used for dynamic simulation of bending problems. 

In these methods, approximations of dynamic field variables are made within each element, which need a discretization 

of the whole structure into small elements. Compared with the FEM, the boundary-type methods such as the boundary 

element method (BEM) [6,7] which forms an integral equation, a boundary mesh is also required to obtain a numerical 

prediction. It is recognised that the meshing for 3D structures with complex geometries is an arduous, time consuming, and 

expensive task. Hence, considerable interests have been received to avoid or simplify the meshing task. 
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In contrast to the mesh-based methods, the meshless methods have been a goal in the computational mechanics com- 

munity and receive great attentions in the past several decades, for example, the smoothed particle hydrodynamics [8,9] , 

the diffuse element method [10,11] , the element-free Galerkin method [12] , and the radial basis function collocation method 

[13–16] , etc. There are other types of meshless methods, named the meshless boundary-type methods, such as the Trefftz 

method [17,18] , the method of fundamental solutions [19–22] , the regularized meshless method [23,24] , the wave based 

method [25,26] , the boundary node method [27–31] , and the boundary point interpolation method [32,33] , ect. These tech- 

niques can be classified into two distinct concepts. The first family of methodologies seek the approximation with the ex- 

pansion functions which satisfy the homogeneous governing equations a priori. Then, the unknown weight parameters are 

obtained by requiring the approximations satisfying the given boundary conditions. The wave based method and the method 

of fundamental solutions, etc, belong to this family. The disadvantage of this family of meshless methods is that trial func- 

tions which are solutions of the governing equations must exist so that an approximate solution may be obtained. The 

second methodology attempts to relax on those strong requirements, and tries to find the approximation by using some 

non-trivial basis functions such as the method of particular solutions (MPS) [34] . The MPS has been proved to be flexible, 

accurate and easy to use. In the MPS, derivation of the particular solutions for a given differential equation is crucial to suc- 

cess of this method. And it is known to all that the particular solution is not unique and there are numerous ways to obtain 

particular solutions for various problems. Over the past two decades, much effort has been devoted to finding the particular 

solution of the problems using different basis functions. Among them, the radial basis functions (RBFs) have witnessed a 

research boom and been successfully employed to obtain the particular solution for some certain partial differential equa- 

tions [35,36] . However, there are still some challenges concerning the determination of the optimal parameter in the RBFs. 

To avoid such difficulties, the particular solutions based on the Chebyshev polynomial functions have been evaluated and 

adopted as alternative approaches [37,38] . However, the solution procedure is tedious. The forcing term of the differential 

equation should be smoothly extendable to the exterior of the solution domain in the case of irregular domains. And it 

remains a difficult task to evaluate closed-form particular solutions for general differential operators. 

Recently, we propose a new strategy for obtaining particular solutions using standard polynomial basis functions. Then 

the proposed particular solution is coupled with the MPS for the simulation of partial differential equations [39] . The main 

advantage of the polynomial basis function over the Chebyshev polynomial functions is that the collocations can be made 

arbitrarily inside the solution domain. In this paper, we extend this method to the analysis of plate bending vibration prob- 

lems. To avoid the ill-conditioning of the resultant matrix, the multiple-scale method [40,41] which is a pre-conditioning 

technique is used to reduce the condition number of the resulting system. It is noted here that one of the weakness of the 

primary algorithm proposed in [39] is the restriction of λ � = 0 in Eq. (1) . In this paper, the proposed method is further ex- 

tended to more general partial differential equations by the subtracting and adding-back technique relaxing the restriction 

on this condition. 

The rest of this paper is organized as follows. In Section 2 , the governing equation and corresponding boundary con- 

ditions of plate bending vibration problems are presented. In Section 3 , we present a detailed implementation of the MPS 

in the context of the polynomial particular solutions for plate bending vibration problems. In Section 4 , numerical results 

of the proposed method are compared against analytical solutions, reference solution by the FEM, the Kansa’s method, and 

reference solutions in literatures for a series of different supported edges with regular and irregular domain geometries. 

Finally, some conclusions are outlined in Section 5 . 

2. Problem definition 

Without loss of any generality, the governing equation of the plate bending problems based on the thin plate theory for 

not too high frequencies can be simplified as follows: 

∇ 

4 w z (x, y ) + λw z (x, y ) = 

q (x, y ) 

D 

, (x, y ) ∈ �, (1) 

where w z ( x, y ) represents the steady-state out-of-plane displacement, q ( x, y ) is loading of the force, and λ denotes the given 

function which is defined by the type of plates, as follows: 

λ = 

k w 

D 

, (2) 

for the Winkler plate, and 

λ = −k 4 b , (3) 

for the thin plate, where k w 

denotes the foundation stiffness. The plate bending wave-number k b and the plate bending 

stiffness D are defined as follows: 

k b = 

4 

√ 

ρhω 

2 

D 

and D = 

Eh 

3 

12(1 − μ2 ) 
, (4) 

with E the Young’s modulus, μ the Poisson’s ratio, ρ the plate material density, ω the angular frequency, and h the plate 

thickness. In order to simulate Eq. (1) , two boundary conditions at each node on the boundary should be specified. Below 

formulations are the commonly encountered boundary conditions at the plate boundary: 
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