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Abstract In this paper we obtain the existence of two one-sign nontrivial solutions for the fractional
Laplacian equations with the nonlinearity having different asymptotic limits at infinity via the
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1 Introduction

In this paper we consider the existence of nontrivial solutions for the following nonlocal elliptic
problem {

(−∆)su = f(x, u) x ∈ Ω,
u = 0, x ∈ RN \ Ω.

(1.1)

where s ∈ (0, 1) is fixed, Ω is an open bounded subset of RN with Lipschitz boundary, N > 2s,
and (−∆)s is the fractional Laplace operator, which (up to normalization factors) is defined as

− (−∆)su(x) :=

∫

RN

u(x+ y) + u(x− y)− 2u(x)

|y|N+2s
dy, x ∈ RN . (1.2)

Along the paper, we suppose in the equation (1.1) that the nonlinearity f : Ω × R → R is a
Carathéodory mapping which satisfies the following conditions:

(f1) f(x, 0) ≡ 0 and lim
t→0

f(x, t)

t
= α uniformly for a.e. x ∈ Ω;

(f2) there are β± > 0 such that limt→±∞
f(x,t)
t = β± uniformly for a.e. x ∈ Ω.

We note here that condition (f2) implies that f grows linearly in t at infinity under the
situation that the asymptotic limits β+ and β− may be different. It follows from (f2) that the
function f verifies the subcritical growth condition

(f) |f(x, t)| 6 a0(1 + |t|p−1) for a.e. x ∈ Ω and all t ∈ R
(
a0 > 0, p ∈ (1, 2N

N−2s)
)
.

The problem (1.1) admits a trivial solution u = 0 due to f(x, 0) ≡ 0. We are interested in
the existence of nontrivial weak solutions for the problem (1.1). A weak solution for (1.1) is a
function u : RN → R such that





∫

R2N

(u(x)− u(y))(ϕ(x)− ϕ(y))

|x− y|N+2s
dxdy=

∫

Ω
f(x, u)ϕdx ∀ ϕ ∈ Hs

0(Ω),

u ∈ Hs
0(Ω).

(1.3)
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