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A B S T R A C T

In this paper, a novel database construction method for passive-image based navigation system within the
planetary precise pin-point landing (PPL) background is presented. The key concept is selecting qualified visual
features to construct the visual database by examining their contribution to the navigation system. We first define
a metric named feature exploitability to evaluate the visual feature's distinctiveness and its spatial imagery dis-
tribution. After that, a greedy selection method is employed to construct the database by selecting features with
high feature-exploitability scores. Then, a hierarchical feature retrieval method is proposed to achieve the
adaptation of image-scale variation during landing and improve the efficiency of feature retrieval. To evaluate our
proposed approach, the Monte Carlo simulation and an experimental test are conducted, simulation results show
the advantage of the feature exploitability driven database construction method over other database construction
methods and the necessity of proper database construction in a vision-aided navigation system for PPL mission.

1. Introduction

Future planetary precise pin-point landing (PPL) mission requires the
real-time update of lander's position and attitude (pose information) with
respect to the pre-determined landing [1], the Passive Image based
Navigation System (PINS) is considered as a promising solution for such
mission, as it provides drift-free absolute lander pose information in the
PPL scenario [2]. In the PINS, the planetary terrain is first sensed by local
visual feature extraction using an on-board camera, and then matched to
a globally-referenced visual database to gain the absolute pose of lander
[3]. The development of PINS in PPL mission has drawn much attention
in recent years [4–8]. The pioneer research dates back to the study car-
ried out by Cuseo et al. [9], in which terrain relative navigation (TRN) is
first introduced in the context of planetary landing to achieve a more
precise navigation. The Japan Aerospace Exploration Agency (JAXA)
designed a multi-sensor navigation system for MUSES-C (the lander) in
Hayabusa exploration mission [10], in which the Harris features are
regarded as visual landmarks, line-of-sight from lander to feature is
employed to guide an on-board LiDAR for active ranging. NASA devel-
oped the Descent Image Motion Estimation System (DIMES) for Mars
landing mission [11], it tracks Harris features in descent images and uses
template matching to achieve data association, by such means, the esti-
mation of horizontal velocity is evidently improved. Cheng et al. [12]
proposed a crater recognition based visual navigation solution for

asteroid landing, in which Canny edges are detected and paired to
represent crater, which serves as the visual landmark for navigation.
Shuang Li et al. [13] proposed a complete vision based navigation
framework for planetary landing, A. I. Mourikis et al. [6] proposed a
vision-aided inertial navigation solution for Mars landing, in which
Harris corners are considered as the visual features and matched to the
database using the normalized template matching method. A. E. Johnson
and Montgomery et al. [4] presented a detailed review of TRN methods
for PPL landing, in which a number of visual cues and their effectiveness
on TRN are investigated. The most recent work has focused on devel-
oping a real-time GN&C prototype named Lander Vision System (LVS) for
the Mars 2020 mission [14], from which an IMU and camera are inter-
faced using Field Programmable Gate Array (FPGA) to carry out precise
pin-point landing, the TRN works in a coarse and then fine feature
matching mode, these matches are then fused with IMU data under a
standard EKF filter, which is similar to the vision-aided navigation
structure proposed in Ref. [6], their helicopter field test shows promising
results [15].

The visual database for VINS must be constructed prior to planetary
landing and cover the entire landing ellipse. The landing ellipse is
determined in the prior investigation, where factors like entry uncer-
tainty, wind disturbance or actuator failure are taken into account by
scientists to reach a consensus [16], for example, the landing ellipse in
Mars landing must cover an area of 20 � 10 km2 near the equator (latest
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result from Mars Science Laboratory, MSL mission [16–18]). Among
studies in the context of visual navigation system for PPL mission, one of
the pioneer works that involved selecting visual features to construct the
visual database is [19], in which the visual features with small mutual
imagery distance are grouped as a “constellation” in a database, however,
although this approach improves the efficiency of feature retrieval, the
database is still too large to store on-board a planetary lander. Delaune
et al. [20] proposed to delete the landmarks that are too close to one
another when constructing the database, their approach results in the
reduction of feature mis-matching. T. J. Steiner et al. [21], proposed an
efficient database construction method, where two metrics are leveraged
in selecting visual features to construct database, one is related to the
probability of camera observing and recognizing the features during
landing and the other is the mutual distance between visual features,
based upon their approach, features that hold greater likelihood of being
recognized and in the meanwhile, contributes more to position estima-
tion are selected, their Monte Carlo experimental test confirmed the
necessity of proper database construction.

In theory, the database would be constructed by collecting all the
visual features within the entire landing ellipse, however, the assembly of
all the features is too large to store on-board the computer or retrieve in
real-time [22]. In addition, consider the fact that planetary terrain is
quite barren and lacks structured landmarks, mismatch is more apt to
occur in feature matching compared to the earth ground applications. To
overcome the above mentioned issues, the visual database can instead
consist of several representative visual features, which can be selected
from a collection of orbit images or high-resolution images acquired by
the planetary rover in prior investigations.

In this paper, we propose a novel visual database constructionmethod
based upon a new metric called “feature exploitability”. This metric
measures a visual feature's distinctiveness as well as its imagery space
distribution, we further propose a hierarchical database retrieval struc-
ture to improve the efficiency of feature retrieving. To evaluate the
performance of our proposed approach, we used a planetary landscape
generator to simulate the planetary surface and employed a vision-aided
inertial navigation system (VAINS) to compare the proposed approach
with other database construction methods. In addition, an indoor
experimental test is built to test the robustness of the proposed approach
against the variation of solar elevation angle and lighting intensity,
which are two main factors in visual feature characterization [25] and
have an evident influence on the performance of the feature association.
The remainder of this paper is organized as follows: Section 2 gives the
definition of feature exploitability. Section 3 presents the feature ex-
ploitability based database construction algorithm. Section 4 presents the
hierarchical feature retrieving approach. Section 5 presents the simula-
tion results and discussion. Finally, conclusions are drawn in Section 6.

2. Feature exploitability

This section presents novel metric called feature exploitability to
measure a feature's validity to the visual navigation system. We define
feature exploitability as a metric composed of the two followed inde-
pendent factors:

1. Similarity metric-S: It measures the distinctiveness of a visual feature,
a visual feature F in database C should be easily distinguished from
the others, and otherwise it will bring much ambiguity to the feature
matching.

2. Distance metric-D: It measures the distance between two visual fea-
tures, which is investigated to be approximately proportional to the
pose covariance reduction.

Since these two factors are independent, we define their weighted
sum as the “feature exploitability”:

EðF;CÞ ¼ αSðF;CÞ þ ð1� αÞDðF;CÞ (2.1)

where E denotes the feature exploitability, F denotes a visual feature,
Cdenotes the visual database, α is a parameter that leverages the simi-
larity metric-S and the distance metric-D.The exploitability of a visual
feature relates to its association performance to a database as well as its
contribution to the pose estimation. To be specific, selecting a sparse
feature is more apt to cause mismatch between features, that further
results in the performance degradation of the pose estimation [23];
secondly, the image distance between visual features in the database also
has impact on the pose estimation, for example, the author in Ref. [21]
claimed that the accuracy of pose estimation decreases as the recognized
features growmore distant, the same result can also be found in Ref. [24]
by a sensitivity analysis. In what follows, we will explain these two
metrics in detail.

2.1. Similarity metric-S

In this work, we choose the SURF feature [25]as the visual feature. An
example of SURF features detected in planetary image is shown below:

As shown in Fig. 1, the image on the right shows the SURF descriptor,
which is a 64 dimensional vector expressed by its characteristic scale and
orientation. SURF feature is a speed-up alternative to SIFT [27], the
reason we chose SURF over SIFT is its robustness against image noise
[25], especially when coping with images with sparse textures (for
example, planetary [28]and underwater images [29]).

The dot product of SURF descriptors is used to match features,
which is

sðF1;F2Þ ¼ FT
1 � F2

kF1k⋅kF2k (2.2)

where F1 and F2 are two SURF features. This metric can be interpreted as
the angle between two descriptors, thus the value of sð⋅Þ is approximately
proportional to the resemblance of these two features. In planetary
image, similar features usually occur around regions with plain texture.
The left image in Fig. 1 presents two similar SURF features and their
ambient regions (the squared sub-regions), obviously, these two features
are less distinctive compared to other features, thus both of them should
be excluded from database. Given Eq. (2.2), the similarity metric Sis
defined by

SðF;CÞ ¼ 1�max½sðF;CÞ� (2.3)

where max½sðF;CÞ� is the resemblance score of the feature F to its most
similar feature in a database C, if feature Fis easily distinguished from all
the other features in C, its similarity metric Swould yield a score near 1.

2.2. Distance metric-D

The author in Ref. [26] claimed that the vehicle pose estimation
uncertainty decreases as the features grow increasingly distant. In this
section we choose a simple scenario to demonstrate such effect, assuming
the camera remains stationary, the Discrete-Time (DT) evolution model
can be expressed as

pðkÞ ¼ pðk � 1Þ þ ωðkÞ (2.4)

where pðkÞ ¼ ½pxðkÞ; pyðkÞ; pzðkÞ�T is the position of camera at time step k,
ωðkÞ � N ð0;QkÞ is the state propagation noise modeled by zero-mean
Gaussian process with covariance Qk. Assume a landmark (or feature)
with global position L ¼ ½lx; ly ; lz�T is recognized at time step kwith the
observation model:

zðkÞ ¼
�
μðkÞ
vðkÞ

�
¼ f

� ðpxðkÞ � lxÞ
��

pzðkÞ � lz
��

pyðkÞ � ly
���

pzðkÞ � lz
� �þ vðkÞ (2.5)

where zðkÞ ¼ ½μðkÞ; vðkÞ�T is the 2D position of a SURF feature, f is the
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