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A B S T R A C T

Attitude motion of a satellite equipped with magnetic control system is considered. System comprises of three
magnetorquers and one three-axis magnetometer. Satellite is stabilized in orbital reference frame using PD
controller and extended Kalman filter. Three-axis attitude is analyzed numerically with advanced assumptions:
inertia tensor uncertainty, disturbances of unknown nature, magnetometer errors are taken into account.
Stabilization and determination accuracy dependence on orbit inclination is studied.

1. Introduction

Magnetic control systems are widely used for satellite attitude
stabilization. They are by far the cheapest and are among the most
reliable, small and lightweight. The drawbacks are the worst accuracy
and even underactuation. Three-axis control is discussed in this paper
following our basic results obtained in [1,2] where PD controller
viability was shown and recipes for control parameters adjustment
were provided. This paper focuses on numerical investigation of
satellite attitude under assumptions relevant to real orbital motion.
Attitude sensors are restricted to a three-axis magnetometer.
Geomagnetic induction vector measurements are processed by ex-
tended Kalman filter. Similar system was considered in [3]. Control
algorithm was based on computationally consuming SDRE technique,
disturbing effects taken into account were different. The main differ-
ence lies in a pitch flywheel bias which effectively facilitates satellite
stabilization process providing "free" stability for two attitude angles
[4].

Magnetometer is a common sensor for satellite attitude determina-
tion system [5,6]. The problem of attitude determination with only
magnetometer measurements is well studied. Extended Kalman filter
was proposed for this problem in [7]. Influence of models parameters
and disturbing torque on the accuracy of gravitationally stabilized
satellite was estimated. Self-initializing filter guaranteeing convergence
with any initial state vector estimate was proposed in [8,9]. Promising
two-step Kalman filter was applied in [10]. Magnetic field derivative

was determined and used for state vector estimation. Present paper
focuses on implementation of the extended Kalman filter with minimal
state vector consisting of vector part of quaternion and angular velocity
vector. This algorithm is sensitive to geomagnetic induction vector
rotation. Filter performance on near equatorial and polar orbits is of
special interest; however it was not yet investigated.

Present paper studies the dependence of the attitude determination
and stabilization accuracy on orbit inclination. Estimation errors
significantly affect attitude stabilization process and vice versa, so the
whole magnetic attitude determination and control system behavior is
investigated jointly. It is shown that control and Kalman filter para-
meters tuning allows stabilization accuracy of few to dozens degrees in
orbital reference frame. Inertia tensor uncertainty, unaccounted con-
stant and/or Gaussian disturbance and magnetometer bias influence
are accounted for.

2. Problem statement

Rigid spacecraft angular motion is considered. The satellite is
equipped with three mutually orthogonal magnetorquers and three-
axis magnetometer. Magnetorquers can produce any restricted dipole
moment. Disturbing torques include gravitational and unknown ones.
The latter are represented by constant and/or arbitrary Gaussian
values. Inertia tensor knowledge is also erroneous.

Two reference frames are used:
OX1X2×3 is the orbital reference frame located at the satellite

http://dx.doi.org/10.1016/j.actaastro.2016.11.045
Received 21 April 2016; Received in revised form 24 October 2016; Accepted 29 November 2016

⁎ Corresponding author.
E-mail address: roldugins@gmail.com (D.S. Roldugin).

Acta Astronautica 132 (2017) 103–110

Available online 03 December 2016
0094-5765/ © 2016 Published by Elsevier Ltd on behalf of IAA.

MARK

http://www.sciencedirect.com/science/journal/00945765
http://www.elsevier.com/locate/actaastro
http://dx.doi.org/10.1016/j.actaastro.2016.11.045
http://dx.doi.org/10.1016/j.actaastro.2016.11.045
http://dx.doi.org/10.1016/j.actaastro.2016.11.045
http://crossmark.crossref.org/dialog/?doi=10.1016/j.actaastro.2016.11.045&domain=pdf


center of mass. OX3 is directed along the satellite radius-vector, OX1 is
directed along the orbital velocity, OX2 completes the frame to be
right-handed;.

Ox1x2×3 is the bound frame described by the principal axes of
inertia.

Satellite attitude is represented using Euler angles α β γ, , (rotation
sequence 2–3-1), direction cosines matrix A and its elements aij (used
for analytical study) and quaternion Λ qq= ( , )0 (used for numerical
simulation). Angular velocity may represent either absolute motion (ω
and its components ωi) or relative motion with respect to orbital
reference frame (Ω and Ωi). Absolute and relative velocities are related
by

ω Ω Aω= + orb (1)

where ωω = (0, , 0)orb 0 is the orbital reference frame angular velocity.
Euler equations for the satellite with arbitrary inertia tensor

A B CJ = diag( , , ) are

Jω ω Jω Ṁ + × = (2)

for absolute angular velocity and

JΩ Ω JΩ M Ṁ + × = + rel (3)

where

M JW Aω Ω JAω Aω J Ω Aω= − − × − × ( + )rel orb orb orb orbω

for relative angular velocity. Wy is a skew-symmetric matrix for any y,
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The torque may contain control part Mctrl and disturbing part. The
latter is divided into gravitational and unknown one,
M M M M= + +ctrl gr dist.

Dynamical equations are supplemented with kinematic relations.
Quaternion kinematics is
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Euler angles are used for analytical analysis, in this case
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Control torque is

M m B= ×ctrl

where m is the dipole control moment of the satellite, B is the
geomagnetic induction vector in bound reference frame. Gravitational
torque is

ωM Ae J Ae= 3 ( ) × ( )gr 0
2

3 3 (7)

where e = (0, 0, 1)3 is the satellite radius-vector in orbital frame.
Unknown disturbing torque is modelled using three different

approaches. Gaussian distribution of the order of 5∙10−7N∙m allows
modelling arbitrary disturbances with small effect on satellite motion
since control torque is few orders greater. Constant disturbance on the
level of 10−7N∙m augmented with Gaussian one represents more
notable disturbance. Constant torque may arise due to aerodynamics
or solar pressure acting on a satellite with vast solar panels. The worst
case is constant torque of 5∙10−7N∙m value.

Inclined dipole model is mainly used to represent geomagnetic
field. It takes into account three first terms in a Gauss decomposition
[11] and allows quite accurate field representation paired with simple

computational procedures. Geomagnetic induction vector is

μ
r

rB k kr r= ( − 3( ) )e
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2

where k is the Earth's dipole vector and r is the satellite radius-vector.
Direct dipole model (k is antiparallel to Earth rotation axis) is used for
analytical approaches, geomagnetic induction vector in orbital frame is
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where B = μ
r0

e
3 , μ km kg s A= 7.812⋅10 ⋅ ⋅ ⋅e

6 3 −2 −1, r is the satellite radius
vector magnitude, u is the argument of latitude, i is the orbit
inclination. Geomagnetic induction vector measurements are modelled
as
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where B∼ are the magnetometer readings, Borb is the modelled induction
(inclined field is used in Kalman filter), ΔB is magnetometer bias, ηB
and ηΔB are Gaussian magnetometer error and bias rate of change, each
with zero mean.

3. Attitude determination using magnetometer

3.1. Kalman filter basics

Kalman filter is a recursive algorithm that uses dynamical system
model and sensor readings for actual motion reconstruction. State
vector assumption tx xˆ = ˆ ( )k k−1

+ is calculated for each discrete time step
tk. Discrete Kalman filter utilizes correction of previous estimate [12].
Consider step k − 1 along with corresponding state vector estimation
x̂k−1

+ and covariance matrix Pk−1
+ . The goal is to find state vector

estimate for the next step x̂ k
+ . First a priory estimate x̂k

− is formed
using straight mathematical model integration. It is corrected using
sensor measurements vector zk to obtain a posteriori estimate x̂ k

+ .
Covariance error matrix Pk

− is also constructed from the previous step
information using Riccati equation. It is then updated to Pk

+ using
measurements.

Kalman filter is designed for linear mathematical models and allows
the best mean-square state vector estimate. It may be adapted for any
non-linear mathematical models of both dynamical system and mea-
surements,

t t tx f x Gẇ ( ) = ( , ) + ( ), (10)

t t tz h x v̇ ( ) = ( , ) + ( ) (11)

where tw( ) is a Gaussian dynamical model error with covariance matrix
D, G is a matrix of influence of model error on state vector, tv( ) is a
Gaussian measurements error with covariance matrix R.

Kalman filter requires right-side functions tf x( , ) and th x( , )
decomposition into the Taylor series in the vicinity of current state
vector. Only linear terms are used in the filter. Dynamical system and
measurements model matrices are
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Discrete extended Kalman filter uses non-linear dynamical and
measurements models for a priory estimate prediction and a posteriori
correction [13].

Prediction phase is

∫ t dtx f x
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where Qk is the covariance matrix of discrete-time process noise, it is
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