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Abstract: The lattice Boltzmann method is used to simulate the oscillating-grid turbulence directly with the aim to reproduce the 
experimental results obtained in laboratory. The numerical results compare relatively well with the experimental data through dete- 
rmining the spatial variation of the turbulence characteristics at a distance from the grid. It is shown that the turbulence produced is 
homogenous quasi-isotropic in case of the negligible mean flow and the absence of secondary circulations near the grid. The direct 
numerical simulation of the oscillating-grid turbulence based on the lattice Boltzmann method is validated and serves as the founda- 
tion for the direct simulation of particle-turbulence interactions. 
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Introduction  

The turbulence generated from the oscillating- 
grid is characterized by its zero-mean flow, yielding 
an approximate homogeneity at some distance away 
from the grid. The intensity of this homogeneous tur- 
bulence can be easily controlled, and thus, it is suita- 
ble to use it for investigating some phenomena encoun- 
tered in hydraulic and environmental engineering[1], 
such as, the free surface fluctuation[2], the particle sus- 
pensions and sedimentation[3], and the sediment tran- 
sport[4]. 

Many experiments on the oscillating-grid turbu- 
lence were conducted for various research purposes. 
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The approximately homogeneous, zero-mean turbu- 
lence can be produced by oscillating a symmetrical 
grid in a water tank[5,6]. The grid is characterized by 
the diameter of the grid bars gd , the mesh size M  
(defined as the spacing between bars), and the grid so- 
lidity σ  (defined as the ratio of the area of bars to the 
total area of the grid). The intensity of the turbulence 
generated by the oscillating-grid depends on the mesh 
( gd , M  and σ ) as well as the stroke S  (the maxi- 

mum distance of the oscillation) and the frequency gf . 
As a rule, to generate a nearly homogenous turbulence 
of zero-mean flow, the solidity of grid σ  should be 
less than 40%[7], the oscillating frequency[8] should be 
less than 7 Hz and the measurements should be taken 
at places 2-3 mesh sizes away[5]. 

Numerical models were also established for more 
profound investigations of how to produce homoge- 
neous turbulence by using the oscillating-grid. The 
direct numerical simulation (DNS)[9], to solve the 
Navier-Stokes equation numerically, was used to exa- 
mine the homogeneous turbulence through adding 
energy continuously and locally into the flow. More 
models such as those solving the Reynolds Equations 
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by using the -k ε  models  were also used for the 
oscillating-grid turbulence. However, there was a long 
debate in the past as to whether it is appropriate to use 
a -k ε  model to describe the zero-mean-shear turbu- 
lence[10]. Therefore, further numerical investigations of 
the oscillating-grid turbulence are desirable. 

The lattice Boltzmann (LB) method[11-13], as a 
new and effective numerical technique of solving the 
Navier-Stokes Equation, has been successfully emplo- 
yed in the field of computational fluid dynamics to 
simulate the turbulent flows, such as the decaying tur- 
bulence generated with an initial spectrum  and the 
forced turbulence with a random forcing term[14,15]. 
For this reason, the LB method can be considered as 
an alternative of the DNS, if the selected lattice size is 
small enough. Using the LB method, Djenidi[15] simu- 
lated the grid-generated turbulence for a steady mean 
flow passing through a fixed grid. Although in his 
study, the turbulence generated by grids is simulated, 
the use of the mean flow is very different from the use 
of the oscillating-grid to generate turbulence. This is 
because the mean flow itself can be a turbulent flow, 
if the Reynolds number is large. In this study, we 
simulate the turbulence generated from an oscillating 
flow through a fixed grid by using the LB method. 
 
 
1. Numerical methodology 
 
1.1 Lattice Boltzmann method 

This is a relatively new numerical technique for 
modeling a physical system response in terms of the 
dynamics of fictitious particles. In the LB approxima- 
tion, the fluid is described by the density distribution 
function ( , )if tx , which describes the number of par- 
ticles at a lattice site x , at the time t , with the dis- 
crete particle velocity ic . The hydrodynamic parame- 
ters, such as the mass density ρ , the momentum den- 
sity j , and the momentum flux Π , can be obtained 
from this particle distribution as follows[16] 
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The LB equation describes the time evolution of 

the particle density distribution function ( , )if tx , and 
can be expressed as 
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where ( )iΩ f  is the collision operator, including the 
lattice Bhatnagar-Gross-Krook (BGK) model, propo- 
sed by Ladd[16] and the multiple-relaxation-time (MRT) 

model[11]. We use the Ladd’s model, ( )iΩ f  can be 
constructed by linearizing the local equilibrium eqf  
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where ijl  is the matrix element of the linearized colli- 

sion operator, the non-equilibrium function =neq
jf  
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i∆ f . 
Here we use the so-called D3Q19 topology, a 

three-dimensional cubic lattice with 19 particle velo- 
city vectors. A suitable form for the equilibrium distri- 
bution of the 19 particle distribution model is 
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where 2= / 3sc c  is the speed of sound, c  is the 
particle speed, i.e., = /c x t∆ ∆ , in which x∆  is the 
lattice spacing, and the weighting factors iW  are equal 
to 1/3 ( = 0)i , 1/18 ( = 1,2, ,6)i   and 1/36 ( = 7,i  
8, ,18)  for the other particle, 6 coordinate directions 
and 12 bi-diagonal directions, respectively. 

The macro-dynamical behavior can be obtained 
from the lattice-Boltzmann equation by a multi-scale 
analysis, i.e., the Chapman-Enskog expansion[18], 
using an expansion parameter ε , defined as the ratio 
of the lattice spacing to a characteristic macroscopic 
length, the hydrodynamic limit corresponds to 1ε ≤ . 
It is shown that the lattice-Boltzmann equation repro- 
duces the Navier-Stokes equations with corrections 
that are of the orders 2u  and 2ε [17]. 
 
1.2 Model implementation 

The computational domain with two grids (Grid 
1 and Grid 2) can generate turbulence. Free slip boun- 
dary conditions are applied on both -x  and -y boun- 
daries. A bounce-back boundary is imposed at the grid 
elements to simulate the no-slip conditions. At the 
inlet and the outlet, an oscillating flow is specified. If 

-z direction is the streamwise direction, the velocity 
can be expressed as = 0u , = 0v  and 0= sin( )w w tw , 
in which = 2 gfω π  is the angular frequency and is the 
characteristic velocity. The oscillating flow is imple- 
mented as 
 

= 0xF , = 0yF , 0= cos( )zF w tρ w w            (5) 
 

This is done by introducing an additional term 
( , )iF tx [18] in the Boltzmann Eq.(2) 
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