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ARTICLE INFO ABSTRACT

Keywords: Contemporaneous occurrences of extreme seas at multiple locations in a neighbourhood can cause greater
Extreme structural reliability and human safety concerns than extremes at a single location. Understanding spatial
Spatial dependence of extreme seas is important therefore in metocean design, yet has received little rigorous attention in
Dependence the offshore engineering literature. We characterise the spatial dependence of storm peak significant wave height

Max-stable process
Composite likelihood
Pooling

North Sea

using three models motivated by max-stable processes for locations in the northern North Sea. Models for mar-
ginal extremes per location, and dependence of extremes between locations, are estimated using Bayesian
inference with composite spatial likelihoods. We show that, in addition to marginal directional non-stationarity of
extreme seas per location, all three models indicate spatial anisotropy in extremal dependence quantified by the
spatial covariance matrix of the corresponding max-stable process. Estimates suggest that extreme seas show
greater extremal dependence from West to East than from North to South.

threshold wu) at some location k on the lattice. Then the condi-
tional density

1. Introduction

Extreme value analysis is a framework to characterise and quantify
extreme phenomena. Using extreme value analysis, we estimate the
marginal tail distribution of a single random variable, or the joint tail
distribution of two or more random variables. Compared with marginal
analysis, multivariate extreme value analysis is more challenging, less
developed theoretically, and less used in practice.

One approach to multivariate extreme value analysis of oceano-
graphic and engineering interest uses spatial processes to describe the
behaviour of spatially-distributed extremes. Consider significant wave
height (Hs) from wind-driven sea states over a spatial lattice of locations
for intervals of time corresponding to storm events. We observe maxima
of Hg per location per storm, referred to as storm peaks, and assume these
to be independent in time. We are interested in characterising the spatial
distribution of storm peak Hs. If the lattice consists of locations

f(xl,xz, e x,,|Xk :xk>uk)

describes the “spatial shape” of dependence for a typical extreme
storm. We might expect that spatial shape is dependent on charac-
teristics of the environment: location (fetch, water depth, bathymetry)
and wind field (central pressure, speed, direction, gradients, wind field
spatial extent). We know from the literature (e.g. Mendez et al., 2008;
Sartini et al., 2015) that marginal extreme value characteristics of
Hg are non-stationary with respect to covariates such as wave direction
and season. We might surmise therefore that storm shape varies
with storm direction and season, as well as varying between ocean
basins. When the data sample is sufficiently large, statistical models
whose parameters are functions of covariates are generally necessary.

1, 2, ..., p, and the continuous random variables and values observed
are respectively X;, xj, forj =1, 2, ..., p, then the joint spatial density of
Xp) = PF/0x10x; ... 0x,
evaluated at (xi, x, xp) =PrX; <xi,
Xy <Xz, ..., X < xp] is the joint cumulative distribution function. As-
sume now that Hg achieves a large maximum value (exceeding some

storm peak Hg might be written f (xl, X2, ...y
..., Xp), where F(x1, X2, ...,
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In practical application, there may be insufficient evidence in the
sample to identify and hence justify incorporating non-stationarity,
especially for the spatial dependence structure. Ascertaining whether
a typical North Sea hindcast sample shows evidence for non-
stationarity of spatial dependence structure is the main objective of
this work.
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We can write the joint density f(x1,x2, ..., Xp) as the product of
marginal densities f(x1),f(x2), ..

tion C(x1,X2, ... ,Xp)

., f(x,) and a dependence func-

Flrnx, o ,x) = [Fla)f (). f(%)]Cx1,x2, ...\ x,).

Estimating the marginal densities is familiar territory: for each k, the
tail X > uy can be estimated using a marginal extreme value model, and
the density below uy estimated empirically. Estimating the dependence
function C is more problematic, especially when the values of one or more
variables is extreme: spatial extreme value methods are needed. Note that
spatial dependence is characterised by C only: if we transform each
variable Xj to Y}, such that {Y;} has a common marginal distribution, the
corresponding transformed dependence function Cy(y1,y2,...,¥,) is a
copula function. There is a large number of copula functions available to
describe multivariate distributions, but only so-called extreme value
copulas are appropriate to describe multivariate extreme value distri-
butions (see Section 3).

From an engineering perspective, improved quantification of spatial
dependence of extreme storms would allow better estimation of un-
certainties in return values from analysis of spatially-pooled data; this is
particularly relevant for ocean basins where storm events (hurricanes,
tropical cyclones) have relatively low rates of occurrence over a spatial
neighbourhood. The work of Heideman and Mitchell (2009) provides a
valuable introduction to approaches used by practising metocean engi-
neers for hurricane-type applications, including site averaging, grid point
pooling and track shifting. The usual approach to uncertainty quantifi-
cation of return values from spatially-pooled data is to assume (wrongly)
that data from different locations are mutually independent; this is called
the “independence likelihood” assumption (e.g. Chandler and Bate,
2007) leading to a joint density

Flrxe, oo, %) = f)f(0) .. f(x),

which ignores dependence function C. We effectively assume that there
are more independent observations than is actually the case, and there-
fore underestimate uncertainties during maximum likelihood estimation.
To correct this, we then need to inflate uncertainty bands using a spatial
“block bootstrapping” scheme (e.g. Chavez-Demoulin and Davison,
2005). Adopting a sample likelihood which more adequately represents
extremal dependence would avoid the need to make the independence
likelihood assumption. An approximation for the sample likelihood with
captures spatial dependence of extremes is essential if Bayesian inference
is to be used, since bootstrapping makes little sense in a Bayesian context.
A better description of spatial shape would also improve our ability to
quantify the consequences of extreme seas impacting multiple locations
at the same time.

Max-stable process (MSP) models (following from the work of de
Haan and Resnick, 1977) represent the most reasonable statistical
approach currently available to inference for spatial extremes. MSPs can
be thought of as extensions of multivariate extreme value distributions to
continuous space, as summarised in Section 3. Their finite p-dimensional
distributions provide a description of dependence function C above for a
lattice of locations. Ribatet (2013) provides a review of MSPs, outlining
the so-called Smith, (1990), Schlather, (2002) and Brown-Resnick
(Brown and Resnick, 1977) models which have found some application
in the environmental science literature. These models are described
further in Section 3.2 and the Appendix, and will be applied in Section 5.
Ribatet (2013) also provides an overview of methods for simulating from
MSPs. Since the multivariate likelihood characterising extremal depen-
dence cannot be written in closed form except in the bivariate case,
approximate likelihoods are necessary for inference using maximum
likelihood estimation. Padoan et al. (2010) presents a composite
likelihood-based approximation for fitting MSPs, evaluates its perfor-
mance using simulated data, and applies it to spatial extremes of daily
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precipitation. The composite likelihood framework used in this work is
outlined in Section 4.

As MSPs arise as the limit distribution of componentwise maxima,
they should be applied to samples of (contemporaneous) maxima (per
location per time interval) for a lattice of spatial locations. However,
extreme value inference using temporal peaks over threshold exploits the
sample more efficiently. Following the ideas of Smith et al. (1997), Huser
and Davison (2014) presents an approximate censored likelihood scheme
for spatial modelling of peaks over threshold, used in this work also, as
outlined in Section 4.

Different forms of extremal dependence exist, as outlined by Eastoe
et al. (2013). Models based on consideration of componentwise maxima
typically assume a particular form of extremal dependence, known as
asymptotic dependence, as discussed e.g. by Kereszturi et al. (2016) for a
sample of significant wave heights similar to that used in this work. This
amounts to the assumption lim,_, ., Pr[Y; > y|Yx >y] >0 at all pairs k, [ of
locations with Y, Y; on common marginal scale (unless Yy, Y; are
perfectly independent in which case the limit is 0). However, it is usually
very difficult if not impossible to identify the form of extremal depen-
dence present in a typical sample of limited size, with covariate effects
also in play. Kereszturi et al. (2016) seek to refine the way diagnostics for
extremal dependence are used in practice to improve their interpret-
ability. For relatively large samples of sea state Hg, they find some evi-
dence for asymptotic independence of extreme values between locations;
for smaller samples of storm peak Hs, diagnostics are inconclusive. For
this reason, we choose here to report applications of asymptotic depen-
dent models (Section 5), whilst referring to related work (Kereszturi,
2016) for models exhibiting asymptotic independence yielding very
similar results.

Estimation of spatial extremes models for samples of non-stationary
peaks over threshold is complicated by at least three effects. Firstly,
spatial extremes models are usually defined for block maxima not peaks
over threshold; yet statistical inference is more efficient using peaks over
threshold, and inference using peaks over threshold is commonplace in
ocean engineering. Fortunately, for exceedances of a high threshold,
likelihoods for block maxima and peaks over threshold can be shown to
be approximately equal, so that the spatial extremes model can also be
applied to peaks over threshold. However, we also need to model whole
samples; we therefore apply a censored likelihood argument to construct
approximate whole sample likelihoods for spatial extremes of peaks over
threshold. Secondly, full joint distributions for spatial extremes are not
available in closed form, but expressions for bivariate cumulative dis-
tribution functions and densities typically are. Using these, we need to
construct composite likelihood approximations to the full likelihood for
parameter estimation. Thirdly, spatial extremes models are defined
assuming common standard Fréchet marginal distributions. In reality,
marginal distributions are non-stationary with respect to covariates. We
therefore need to fit non-stationary marginal models and transform
marginally to standard Fréchet scale under these models. The spatial
extremes model may of course also be sensitive to covariates.

The MSP is by far the most popular approach in the statistics literature
to characterise extreme spatial processes. However, the conditional ex-
tremes model of Heffernan and Tawn (2004) provides an alternative
modelling framework motivated by extreme value theory, advantageous
in that it admits both asymptotic dependence and asymptotic indepen-
dence within the same model. It also provides a relatively straightfor-
ward means for estimation on spatial grids, as illustrated e.g. by Eastoe
et al. (2013).

1.1. Outline of paper

The motivation for this work is to consider (a) the feasibility and (b)
the usefulness of applying multivariate extreme value models to real-
world ocean engineering design problems. We assess the extent to
which there is evidence, in typical samples of (storm peak) significant
wave height where marginal non-stationarity has already been
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