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A B S T R A C T

Extreme values of an environmental response can be estimated by fitting the generalised Pareto distribution to a
sample of exceedances of a high threshold. In oceanographic applications to responses such as ocean storm
severity, threshold and model parameters are typically functions of physical covariates. A fundamental difficulty
is selection or estimation of an appropriate threshold or interval of thresholds, of particular concern since
inferences for return values vary with threshold choice. Historical studies suggest that evidence for threshold
selection is weak in typical samples.

Hence, following Randell et al. (2016), a piecewise gamma-generalised Pareto model for a sample of storm
peak significant wave height, non-stationary with respect to storm directional and seasonal covariates, is
estimated here using Bayesian inference. Quantile regression (for a fixed quantile threshold probability) is used
to partition the sample prior to independent gamma (body) and generalised Pareto (tail) estimation. An
ensemble of independent models, each member of which corresponds to a choice of quantile probability from a
wide interval of quantile threshold probabilities, is estimated. Diagnostic tools are then used to select an interval
of quantile threshold probabilities corresponding to reasonable model performance, for subsequent inference of
extreme quantiles incorporating threshold uncertainty.

The estimated posterior predictive return value distribution (for a long return period of the order of 10,000
years) is a particularly useful diagnostic tool for threshold selection, since this return value is a key deliverable in
metocean design. Estimating the distribution using Monte Carlo simulation becomes computationally
demanding as return period increases. We present an alternative numerical integration scheme, the
computation time for which is effectively independent of return period, dramatically improving computational
efficiency for longer return periods.

The methodology is illustrated in application to storm peak and sea state significant wave height at a South
China Sea location, subject to monsoon conditions, showing directional and seasonal variability.

1. Introduction

1.1. Threshold selection

Threshold selection in practical application of extreme value
analysis is almost always problematic. Even in the absence of covariate
effects, it is rarely clear where the threshold should be set, or indeed if
setting a single threshold is even desirable. A review of threshold
selection for extreme value analysis is given by Scarrott and MacDonald
(2012). The generalised Pareto (GP) model for peaks-over-threshold is
motivated by asymptotic arguments: the threshold needs to be set high

enough so that a generalised Pareto model fits threshold exceedances
reasonably, to reduce bias. Yet the threshold should be set low enough
that there are sufficient exceedances to estimate generalised Pareto
model parameters, to reduce variance: a typical bias-variance trade-off.
Graphical techniques such as the mean excess plot (Ghosh and
Resnick, 2010) can be of some use in aiding a sensible threshold
choice, as can inspection of the stability of generalised Pareto shape
parameter estimate or other key inferences, such as estimates for
return values or other structure variables as a function of threshold.
Here, a structure variable is any variable defined in terms of one or
more responses modelled by extreme value analysis. For example, the
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load on an offshore structure can be considered a structure variable,
defined in terms of extreme value responses including significant wave
height, current speed, wind speed etc. Graphical techniques for thresh-
old selection are rarely conclusive however. Some authors, including
Sanchez-Archilla et al. (2008), Thompson et al. (2009), Northrop and
Coleman (2014) and Wadsworth (2016), have proposed procedures for
estimating good thresholds, but these all contain subjective elements.
In the presence of covariate effects, threshold selection is even more
problematic. Typically, the threshold is set as a local (covariate-
dependent) quantile of the response, and the problem of threshold
selection transformed into one of specifying the appropriate threshold
quantile level for the covariates used.

1.2. Threshold estimation

One approach to overcoming the need to specify an extreme value
threshold ψ before extreme value inference is to make ψ a model
parameter to be estimated. To achieve this, the extreme value model
must be extended so that it describes part or all of the body of the
sample, as well as extreme value threshold exceedances, such as in
Tancredi et al. (2006), Wadsworth et al. (2010), MacDonald et al.
(2011) and Randell et al. (2016). Yet in such a model, incorporating
extreme value inference and estimation of ψ, it is not clear whether is
desirable that estimation of ψ be influenced by model fit to threshold
non-exceedances: adequate fit of the generalised Pareto tail should take
priority, since tail estimation is our primary concern. From this
perspective, models for which ψ is pre-specified with no regard to
threshold non-exceedances would seem advantageous.

1.3. Incorporating threshold uncertainty

Values q ψ( ) for return values (and other structure variables of
interest) can be found corresponding to any threshold ψ. A final
“preferred” return value q1 might then be selected corresponding a
single “best” threshold ψ , found either from inspection of diagnostics
(or model estimation), such that

q q ψ= ( ).1
▵

Alternatively, we can provide final return values q2 by integrating over
suitable values of ψ specified by some density f ψ( ), itself inferred from
inspection of diagnostics (or directly estimated). Then

∫q q ψ f ψ dψ= ( ) ( ) .
ψ2

▵

The advantage of using q2 over q1 is that uncertainty in ψ is propagated
through to return values. When pre-specification or estimation of ψ is
problematic, it seems reasonable to prefer q2 over q1. When pre-
specification or estimation of ψ is straightforward, we expect q2 and q1
to be similar since f ψ( ) provides probability mass only around ψ .
Northrop et al. (2017) discuss cross-validatory threshold selection,
including a method for incorporating threshold uncertainty.

In this work, we choose to employ estimates of the form q2 for
return values, but note that there is still considerable subjectivity in the
choice of f ψ( ) to be used. We seek to inform this choice by considera-
tion of various model diagnostics. We thereby hopefully introduce
some rationality, but make no claim to have removed all subjectivity.

1.4. Non-stationary Bayesian extreme value modelling

In Randell et al. (2016), a model for the distribution of independent
observations of peaks-over-threshold of a response such as storm peak
significant wave height given multidimensional covariates is developed,

incorporating the generalised Pareto distribution for exceedances of
some estimated non-stationary threshold. A truncated Weibull dis-
tribution characterises values below the threshold. The model is used
primarily to estimate distributions of return values corresponding to
long return periods, for use in the design and reliability assessment of
marine and coastal structures. The methodology is intended to be easy
to use, and computationally efficient for full-scale oceanographic
applications for sample sizes from 103 to 107 with at least a two-
dimensional (e.g. directional-seasonal) covariate domain. Practical
applications' experience using the model suggests that (a) there is
often little or no evidence in the sample to inform threshold selection,
that (b) the model form itself is perhaps too restrictive to facilitate easy
threshold estimation using Bayesian inference, and that (c) the gamma
distribution provides an equally flexible form for the distribution of
non-exceedances, together with more stable inference when likelihood
gradients are exploited (Section 3.5).

We have concluded, for typical applications to ocean storm severity,
that there is little value in seeking to estimate extreme value threshold
directly. Instead, making inferences using an ensemble of piecewise
gamma-generalised Pareto models, each of which corresponds to a
specific threshold choice, is less problematic inferentially and more
useful in practice. Ensemble members (and hence thresholds) are
selected to give reasonable performance, as judged by inspection of
relevant model diagnostics. Specifically, ensemble threshold choices
typically correspond to an interval of threshold probabilities for a non-
stationary quantile regression threshold, as in Randell et al. (2015).
The model is described in Section 3.

1.5. Return value estimation

Return value estimates are the key deliverable of metocean design.
In the presence of covariates and multiple extreme value thresholds,
closed form expressions for return values are not available. As a result,
Monte Carlo simulation is typically used. This involves simulating
under the estimated model, generating thousands of realisations of sets
of extreme values corresponding to the return period of interest. Monte
Carlo simulation also provides an intuitive framework for estimating
return value distributions for “dissipated” or sea state significant wave
height from an extreme value model for storm peak events. The
computational burden increases approximately linearly with return
period. Parallel computation is useful, but nevertheless return value
estimation by Monte Carlo simulation remains computationally in-
tensive, accounting for the vast majority of computing resource
required for a typical study (Section 4).

We have developed numerical integration algorithms to replace all
Monte Carlo simulations previously performed, resulting in a huge
reduction in time required for analysis. The approach is described in
Section 4.

1.6. Outline of article

The objective of this article is to improve the applicability of the
methodology presented in Randell et al. (2016), in two major respects.
Firstly, we simplify the extreme value model by performing prior non-
stationary quantile regressions to estimate possible extreme value
thresholds, and use each of these thresholds in turn to partition the
sample into “body” and “tail”. Independent gamma and generalised
Pareto models are next estimated for body and tail respectively using
Bayesian inference. Finally, an ensemble of models (for different
plausible threshold choices) is adopted for return value inference.
Secondly, we replace return value inference using computationally-
intensive Monte Carlo simulation by a computationally-efficient nu-
merical integration scheme, which amongst other things, improves the
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