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A B S T R A C T

In those oceans where measured wave data are not available, numerical wave models are usually adopted to
hindcast wave parameters in order to define design waves for marine structures. To utilize these hindcating
data, it is very important to perform error corrections of model results for accurate estimation of the appropriate
wave parameters. In this paper, a new non-parametric correction model is established to improve wave model
accuracy through modifying a previous approach released by Caires and Sterl in 2005. The new correction
model introduces a kernel algorithm to learn error information from both value magnitude and series trend
through training datasets, and utilizes the information to correct potential errors in model outputs. It is shown
that the two-dimensional learning method is more effective than the previous one-dimensional which only
learns error information from the value magnitude. Furthermore, an error constraint parameter is initially
adopted in the new correction model to decrease the possibility of overcorrection. The new correction model
performs better than its predecessor, especially when modeling wave period and altimeter synchronized wave
height. Though this paper evaluates the model correcting performance with WAVEWATCH III outputs, the
modified model can be adopted to correct other kinds of time-series data.

1. Introduction

Wave force is a key environment parameter for designing of the
costal and offshore structures. Generally, designing waves are defined
as return period values which are calculated following extreme value
theories based on hindcasting wave data or long historical measure-
ments (Anthony et al., 2015; Linbin et al., 2015). Measurement data,
such as buoy data, are always top priority to act as sampling data for
calculation of return values. However, measurement data is not always
readily available in the locations of interest.

As a substitute for measurement data, numerical wave models are
widely adopted to hindcast wave time-series in kinds of studies.
Currently, the third generation wave models highlighted with nonlinear
wave interaction dominate wave hindcasting or forecasting operations
(Peter and Janssen, 2008) such as WAM(TheWAMDI Group, 1988),
WAVEWATCH III (Tolman, 2014) and Simulating WAve Nearshore (
Booij et al., 1999, hereafter as SWAN), all of which simulate wave
propagation based on the energy or wave action equation. In these
models the wave physics are parameterized through source terms and
the parameters have been tuned elaborately according to diverse
measured data in the past decades resulting in a robust performance

with good agreement with measured data (Tolman, 2014). Generally,
WW3 and WAM are designed especially for oceanic or global applica-
tions (Amrutha et al., 2016; Bernier et al., 2016; Charles et al., 2012;
Chawla et al., 2013; Dykes and Rogers, 2011; Hanafin et al., 2012; Li
et al., 2016). On the contrary, SWAN is more efficient and accurate in
coastal areas since some nearshore wave evolution processes have been
incorporated into the model with parameterized terms, such as depth
induced wave breaking and triad wave interactions (Amrutha et al.,
2016; Booij et al., 1999; SWAN Team, 2013). Considering its reliable
performance and wide applications in the oceanic basin scale, WW3
V4.18 is adopted to hindcast wave data in the South Sea of China (SSC)
in the present work.

It is unavoidable that there are biases between the numerical model
outputs and the real waves, which are mainly caused by input wind
field (Liu et al., 2002; Peter and Janssen, 2008) although numerical
approach for the energy equation and parameterization of the wave
physics also partly contribute to the errors (Hanson et al., 2009;
Tolman and Chalikov, 1996). Researchers have revealed that there are
some definite tendencies in the WW3 model errors (Hanson et al.,
2009) and different ocean areas are featured with different error
tendency (Chawla et al., 2013). The most efficient approach to reduce
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WW3 model error is to improve quality of wind input data since whose
accuracy dominates the credibility of model output, for example
making a forecasting wind filed with kinds of source data (Sampson
et al., 2013) or with regional higher resolution wind field (Alves et al.,
2014).

Over the past few decades, researchers have released different
parameterization proposals for wave physics with expectation of
improving model performance (Ardhuin et al., 2010; Babanin et al.,
2010; Chawla et al., 2013; Hanafin et al., 2012; Peter and Janssen,
2008; Seemanth et al., 2016; Tolman, 1992; Tolman and Chalikov,
1996). Additionally, some studies introduce statistical techniques to
evaluate the simulation of wave spectra (Peter and Janssen, 2008) and
further to improve the accuracy of simulation. However, it seems that
“there may be an underlying limitation to further improvement of
models based on the concept of a wave energy spectrum”(Liu et al.,
2002).

Though numerous efforts have been made to minimize errors
through improvement of model performance, errors always exist in
numerical model outputs. Consequently, some researchers introduce
error correction on the model results. A simple method is to assume
that there are linear relationships between the errors and the model
parameters under which all model output data can be corrected with
linear or constant coefficients (Mackay et al., 2010; Xiaoli Guo et al.,
2015). However, it has been revealed that modeling waves seldom
share a universal error ratio (Chawla et al., 2013; Hanson et al., 2009).
Differentiating from the linear correcting methods, some researchers
attempted to correct errors based on nonlinear methods (Caires and
Sterl, 2003, 2005) which had been utilized to correct EAR-40 reanalysis
data. Hadadpour et al. (2013) introduced an artificial neural network
approach, a widely used machine learning (ML) method, to correct
hindcasting results of SWAN model which is proven to be efficient.
According to these researches, it is a feasible method to improve
hindcasting performance of wave model outputs through correcting
model results.

It has been proven strong consistency of estimators of the condi-
tional distribution function and conditional expectation of a future
observation of a discrete time stochastic process given a fixed number
of past observations (Caires and Ferreira, 2005). Based on the strong
consistency, a non-parametric method is proposed to correct ERA-40
wave height (Caires and Sterl, 2005). Because of its superiority without
predefined parameters, non-parametric methods are widely used to
estimate best fitted values (Zhang and Singh, 2006). The non-para-
metric method proposed by (Caires and Sterl, 2005) can correct wave
height data selectively based on external knowledge learned from a
training dataset avoiding arbitrarily identical correction on all wave
values. Because the non-parametric correction method is initially
released by CAires and STerl in 2005, this method will be abbreviated
as CAST model in the following sections.

Although was not explicitly classified as ML model in its debut, the
CAST model does essentially perform ML functions according to
definition of ML (Lantz, 2015), for example it can learn error
information through training datasets and use the learned information
to correct errors. In fact, rather than just proposing an error correction
method, the initial CAST (Caires and Sterl, 2005) has developed a
framework to correct model errors with ML technique.

Though it performs good corrections on ERA-40 wave data,
practical operations prove that the previous CAST model fails to
conduct effective corrections to the WW3 outputs notably that wave
periods are frequently overly corrected referring to the Section 4 of this
paper.

The present work proposes an Improved CAST model (ICAST)
based on the framework of the previous CAST model aiming to improve
accuracy of the results of numerical wave models. WW3 is selected as
the example model to be investigated. Generally, the ICAST model
shares similar principle with the CAST, that is, firstly to learn error
information from a short duration of training datasets and secondly to

perform error correction on longer duration of time series. However,
the ICAST model adopts a new kernel algorithm. According to the
studies in this paper, the ICAST model can perform better correction
for WW3 results than the CAST model, especially wave periods can be
corrected effectively. The present work is structured as follows: Section
2 gives brief introductions to the datasets used in this paper. Section 3
introduces the formulas of the previous CAST and the present ICAST
models. Detailed comparison of the two models are presented in the
Section 4. Discussions and conclusions are given in Section 5 and
Section 6 respectively.

2. Wave data

There are two types of data used in this paper. The first type of data
consists of measured data including buoy data and altimeter data,
whereas, hindcastng wave data by WW3 model constitute the second
type of wave data.

2.1. Hindcasting wave data

The hindcasting wave model in this paper is established based on
the third generation wave model WW3 (V4.18) (Tolman, 2014). The
modeling area covers latitude from 5°N~45°N and longitude from
100°E~ 145°E with grid resolution of 10′×10′and numeric obstacles
have been embedded to simulate effect of numerous islands. The NCDC
blended sea winds data (Zhang, 2006) (1989–2008, http://nomads.
ncdc.noaa.gov/data/seawinds/) and the GFSANL wind data (2009–
2014, http://nomads.ncdc.noaa.gov/data/gfsanl) are adopted as input
wind forcing the hindcastng model. Classical T & C package (Tolman
and Chalikov, 1996) is adopted to simulate wave physics with
quaternate time steps set up as ‘1800s,900s,180 s,40 s′. More than
20 years of wave time series are obtained.

This present paper takes the South China Sea (SCS) as the ocean of
interest. Two types of model data are extracted from the hindcasting
WW3 model. One type of data is outputted from the WW3 model at the
locations of three operational buoys B1~B3, referring to the Fig. 1,
which can be regarded as buoy synchronized data. All of the three
buoys are moored in open ocean where water depth is approximately
30–50 m. The buoys are approximately 50–85 km apart away from the
coastline.

Another set of wave outputs of the WW3 is extracted following
synchronizing track of altimeters whose orbiting information can be
accessed by the GlobWAVE project (http://globwave.ifremer.fr/).
Because of the numeric discretization for solution of partial
equations, exactly synchronization between altimeter and model is

Fig. 1. Locations of buoys and covering range of the altimeter wave data (ALWD).
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