
2017 IEEE 13th International Conference on Electronic Measurement & Instruments                  ICEMI’2017 

A recognition algorithm for BPSK/QPSK signals based on generalized Pareto 
distribution

Yang Li1,2, Hu Guobing1, Hu Xuelong2 Xu Xiaoyang1

1. Department of Electronic Information Engineering, Jinling Institute of Technology, Nanjing 211169,China; 
2. School of Information Engineering, Yangzhou University, Yangzhou 225127, China 

Email: yangli691@jit.edu.cn, huxuelong@126.com

Abstract In this paper, an algorithm for recognizing 
BPSK/QPSK signal is proposed. Extreme value theory is 
introduced, and an exceedance sequence is built from the 
modified spectrum obtained by the squaring operation of the 
observed signal, and the problem of recognizing the 
BPSK/QPSK signal is transformed to the problem of whether 
the distribution of the exceedance sequence approximately 
follows its standard generalized Pareto distribution or not. 
Finally, the Kolmogorov–Smirnov test is applied to perform the 
goodness-of-fit test of the generalized Pareto distribution of the 
exceedance sequence to complete the task of BPSK/QPSK 
signal recognition. Computer simulation results show that the 
recognition performance is good when the signal-to-noise ratio 
is moderate and does not require prior information such as 
noise variance. 
Key words  BPSK/QPSK signal; signal recognition; extreme 
value theory; generalized Pareto distribution; 
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 INTRODUCTION 

 Modulation recognition of signals has a wide 
range of applications in digital receivers used in radar 
electronic warfare or software-defined radio[1-9]. It is 
used as an intermediate stage between signal 
modulation and demodulation. Modulation 
recognition involves observing the signal, determining 
the modulation mode, and estimating the 
corresponding parameters. Considering the 
modulation recognition problem, several scholars 
have conducted research from different perspectives. 
In [10], signal noise is estimated by using the 
Wigner–Ville distribution, and the features are 
extracted by employing time–frequency analysis; 
finally, parameters are computed by using the 
fractional Fourier transform to achieve signal 
recognition. This technique is applied in various 
systems, such as electronic support electronic attack
and multiple-input multiple-output systems. The 
recognition performance achieved with this technique 
is satisfactory under low signal-to-noise ratio (SNR) 
conditions. In [11], features are extracted by using 
Wigner and Choi–Williams time–frequency
distributions, and features that are not useful are 
rejected by an information-theoretic feature selection 
algorithm. The technique is applied in spectrum 
management and supervision of cognitive radio and  

radar systems, and the recognition performance is 
satisfactory when the SNR is moderate. Another 
similar approach using time–frequency analysis based 
on noncoherent integration of the short-time Fourier 
transform is presented in [12] and multiple signals are 
recognized effectively by the proposed algorithm. In 
[13], to address the modulation signal blind 
recognition problem under low SNR conditions, an 
energy focusing efficiency feature is defined to 
identify the modulation type of the signals on the basis 
of analysis of the condition for the single sinusoid 
generated from six types of intrapulse modulation 
signals. The algorithm is effective for the recognition 
of the common intrapulse modulation signals under 
low SNR conditions. 

In this paper, we introduce the extreme value theory 
(EVT) theory, and present an algorithm for 
BPSK/QPSK signal modulation recognition based on 
generalized Pareto distribution (GPD). First, the 
amplitude spectrum of squaring operation of the 
observed BPSK/QPSK signal is transformed into the 
modified spectrum, and a new sequence is obtained by 
the square of the modified spectrum. We set a 
threshold, and the random sequence is generated from 
the peak over the threshold model, and is named as 
exceedance sequence in this paper. Finally, the 
Kolmogorov–Smirnov (KS) test is applied to test the 
goodness-of-fit between the exceedance sequence 
distribution and the GPD. A fit indicates that the 
signal is BPSK; otherwise, the signal is QPSK. 

 SIGNAL MODEL 

The observed discrete-time signal model can be 
expressed as 

( ) ( ) ( ) exp( [ ( )]) ( ),0 1x n s n w n A j n w n n N (1)

where ( )s n is the signal, A  and ( )n  are the 
amplitude and the phase function of the signal 
respectively, and N  is the length of the observed 
samples. ( )w n  denotes the white Gaussian noise, 
which is uncorrelated to the signal ( )s n . As for phase 
modulation, the phase function ( )n implies a 
different modulation mode. 

Here, the phase function is defined as 
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0( ) 2 ( )in f n t d n              (2) 

where 0f  is the signal carrier frequency, t  is the 
sampling interval, and  is the initial phase. ( )id n
denotes the modulation mode of the signal; when 

0i , the signal is BPSK, and when 1i , the signal 
is QPSK. Therefore, the problem of recognizing 
BPSK/QPSK signal is summed up as follows: under 
the 0H  hypothesis, the signal is BPSK; under the 

1H  hypothesis, the signal is QPSK.

ALGORITHM DESCRIPTION 

A. Modified spectrum 

Let the observed BPSK/QPSK signal be ( )x n ;
( )y n  is given as ^( ) ( ) 2y n x n . The amplitude 

spectrum of the discrete Fourier transformation of 
( )y n  is given by ( ) ( ( ))Y k DFT y n . The position of 

the maximum value of ( )Y k is recorded as 0k , whose 
left and right N  spectral lines are turned to 0. Now, 
the modified spectrum can be calculated by using the 
expression 

0 0

0 0

0, ( , )
( )

( ), ( , )
k k N k N

Z k
Y k k k N k N

         (3) 

It is obvious that under the 0H  hypothesis, ( )y n
is a sine wave, and its amplitude spectrum ( )Y k  has 
one peak spectrum line, the value of which is the 
largest among ( )Y k . Therefore, the modified 
spectrum ( )Z k  is the actual noise spectrum, the 
values of which are all small. Meanwhile, under the 

1H  hypothesis, ( )y n  is BPSK, and its amplitude 
spectrum ( )Y k  has several peak spectrum lines, the 
values of which are larger, so the modified spectrum 

( )Z k  also has several peak spectrum lines. 
The new sequence ( )P k  is defined as 

^( ) ( ) 2P k Z k . According to the analysis above, 
under the 0H  hypothesis, ( )P k  is the noise 
spectrum; under the 1H  hypothesis, ( )P k  still has 
some peak lines. 

B. Exceedance distribution of modified spectrum 

Theorem: Assuming that 1X , 2X , 3X , … are 
independent and identically distributed (IID) random 
variables whose distribution function is ( )F x , let 

1 2max , ,...,n nM X X X , if normalized series 
0na , nb are existed, as for large enough n , there 

is the conclusion 
rP ( ; . . )n n nM a x b H x          (4) 

where ( ; . . )H x  is a generalized extreme value 
(GEV) distribution, because for a large enough 
threshold u , under the condition X u , the 
distribution of X u  is approximately GPD. It is 
given as 

1/, , 1 (1 / )G y y            (5) 

Proof: The theorem above is proved in paper [14]. 
According to the central limit theorem[15], under the 
0H  hypothesis, the sequence ( )P k  is the noise 

spectrum, which is an IID exponential distribution. 
Then the limit distribution of the maximum value of 

( )P k 1 2max( , ,..., )nP P P denoted by F P is a 
GEV distribution. By setting the threshold 0 , the 
exceedance sequence is given by  

0 0( ) , ( )
0 ,

P k P k
G

else
            (6) 

1 2{ , ,..., }LG g g g has L  greater values in total. The 
limit distribution of the sequence G  follows GPD. 

However, under the 1H  hypothesis, the new 
sequence ( )P k  not only has peak spectrum lines, but 
also contains noise spectrum lines. The part of the 
peak spectrum follows noncentral chi-square 
distribution, while the part of the noise spectrum 
follows exponential distribution. Therefore, ( )P k  is 
not IID random variables sequence, and it does not 
satisfy the condition of GEV distribution. It can be 
readily seen that the exceedance sequence 

1 2{ , ,..., }LG g g g  does not follow GPD under the 
1H  hypothesis. 
Fig.1 shows that the distributions of the exceedance 

sequences obtained by BPSK and QPSK signals and 
their GPD under the same simulation condition. In 
Fig.1, the blue line and the red circle are the GPD and 
the distribution of the exceedance sequence, 
respectively. It can be clearly seen that under the 0H
hypothesis, the exceedance sequence approximately 
follows GPD, whereas under the 1H  hypothesis, it 
does not follow GPD. Hence, the BPSK/QPSK signal 
is recognized by taking advantage of the features as 
mentioned above. 
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