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a b s t r a c t

The subgroup methods based on partial cross section fit scheme (PXSFS) and simplified partial cross sec-
tion fit scheme (SPXSFS) are proposed in this paper to treat problems with non-uniform temperature dis-
tribution. These methods fit the cross sections at different temperatures as partial cross sections and
share a same set of subgroup probabilities. The new methods are compared to the pre-existing methods:
conventional subgroup method (CSM), the correlation model (CM), the subgroup level adjustment
scheme (SLAS) and the number density adjustment scheme (NDAS). The numerical results show that
the new methods can better predict the spatially dependent reaction rates than pre-existing methods.
Within the new methods, the simplified scheme consumes less computation time and is more numeri-
cally stable. Additionally, the superhomogenization (SPH) correction method is studied, which is used
to treat the multi-group (MG) equivalence effect. It is found that the subgroup-one-group (subgroup-
1G) calculation can fully capture the MG equivalence effect.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The subgroup method has long been used for self-shielding cal-
culation in lattice codes for its geometrical adaptability and bal-
ance between precision and computational time (Nikolaev et al.,
1970; Chiba and Unesaki, 2006; Hébert, 2009a; Li et al., 2015).
Recently, the direct whole-core high-fidelity neutronics calculation
codes, such as DeCART (Joo et al., 2004), nTRACER (Jung et al.,
2013) and MPACT (Liu et al., 2013), were developed taking advan-
tage of advancements in high performance computing. These codes
all select the subgroup method to perform the self-shielding calcu-
lation step. One of the challenges newly encountered in the direct
whole-core high-fidelity self-shielding calculation is how to obtain
precise spatially dependent reaction rates within a pin cell. Many
effects impact the spatially dependent reaction rate, such as the
spatial self-shielding effect (Stoker and Weiss, 1996), the reso-
nance interference effect (Williams, 1983; He et al., 2016), the
non-uniform temperature distribution effect (Jung et al., 2016)
and the multi-group (MG) equivalence effect (Hébert, 2009b). This
paper focuses on the non-uniform temperature distribution effect
and the MG equivalence effect.

Generally, the subgroup method divides an energy group into
several subgroups according to the magnitude of the cross section
(XS) rather than the energy. The ratio of the energy range of a sub-
group to the energy range of an energy group is the subgroup prob-
ability and the average XS in a subgroup is the subgroup level,
which are called the probability table in combination. There are
two kinds of probability tables. The first one is the physical proba-
bility table which preserves the resonance integral (RI) (Halsall,
1995; Casal et al., 1991). Another is the mathematical probability
table which preserves the XS moments (Cullen, 1974; Grimstone
et al., 1990). Neither of these method is guaranteed to share the
same set of subgroup probabilities for a resonant nuclide at differ-
ent temperatures. This means that the subgroup fixed-source
equation cannot be formulated based on the energy range of a sub-
group as energy ranges for different temperatures are different. In
this paper, the conventional subgroup method (CSM) refers to the
subgroup method based on physical probability table.

Many schemes have been developed to overcome this defect:
the correlation model (CM) (Nikolaev et al., 1970; Hébert, 2009a;
Takeda and Kanayama, 1999), the subgroup level adjustment
scheme (SLAS) (Joo et al., 2005) and the number density adjust-
ment scheme (NDAS) (Jung et al., 2016; Wemple et al., 2007).
The CM finds the overlap energy range of subgroups of one
resonant nuclide at different temperatures. Then the probability
table is redefined by the shared subgroup probabilities. The
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disadvantage is an increase in the number of subgroups with the
increase in the number of temperatures. Therefore the computa-
tional time will increase accordingly. The SLAS forces subgroup
probabilities at different temperatures to be same and then adjusts
the subgroup levels by preserving the RI at infinite dilution. How-
ever, the RIs at other dilutions will not be preserved. The NDAS
uses the probability table at average temperature for all tempera-
tures and adjusts the number density accordingly. However, the
assumption that the number density adjustment factor is the same
for different subgroups is adopted, which will introduce errors in
computation.

In this paper, the subgroup methods based on partial cross sec-
tion fit scheme (PXSFS) and the simplified partial cross section fit
scheme (SPXSFS) are proposed. These methods define partial XS
at different temperatures with shared continuous-energy (CE) flux
spectrum. The newly defined partial XS is an extension of the def-
inition of partial XSs in the CSM (including total XS, absorption XS,
scattering XS and neutron production XS). In the CSM, the sub-
group probabilities are shared among different partial subgroup
levels in the fitting procedure as the CE flux spectrum for MG con-
densation is shared among these partial XSs. In light of this, the
subgroup probabilities can also be shared among partial XSs at dif-
ferent temperatures. The differences between PXSFS and SPXSFS
will be discussed in Section 2. The new schemes are compared to
the pre-existing schemes: CSM, CM, SLAS and NDAS. A simple pin
cell problem is analyzed and the numerical results show that the
new schemes can predict the spatially dependent reaction rates
better than the pre-existing schemes.

Another important effect that impacts the spatially dependent
reaction rates is the MG equivalence effect (Hébert, 2009b). The
essence of the self-shielding calculation is to condense the CE
XSs to MG XSs with problem-dependent flux spectrum. However,
the reaction rates obtained by the MG calculation are not consis-
tent with those obtained by the CE calculation even when the flux
spectrum is correct, which is the MG equivalence effect. The super-
homogenization (SPH) correction method (Hébert, 2005; Peng
et al., 2013; Yamamoto et al., 2011; Sugimura and Yamamoto,
2007; Park and Joo, 2017) and discontinuity factor (DF) method
(Smith, 1986; Sanchez, 2009), which is originally employed to cap-
ture the spatial homogenization effect can be used to treat the MG
equivalence effect. The SPH correction method is adopted in this
paper.

The rest of the paper is organized as follows. The theory of the
pre-existing schemes, the new schemes and the SPH correction
method will be given in Section 2. The numerical results will be
given and analyzed in detail in Section 3. The conclusions will be
given in the last Section.

2. Theory

2.1. Conventional subgroup method

There are different implementations of the subgroup method.
The subgroup method can be classified according to how the prob-
ability tables are obtained. The physical probability table tries to
preserve the RI table or XS table and the mathematical probability
table tries to preserve the XS moments (Hébert, 2005). The physi-
cal probability table is preferred in this paper for that the mathe-
matical probability table needs more energy groups to capture
the slowing-down effect (Joo et al., 2009). The physical probability
table can be classified into homogeneous table and heterogeneous
table (Joo et al., 2009; Liu and Martin, 2016). The difference is that
the homogeneous table tabulates XSs by solving homogeneous
slowing-down equations with varying dilution XSs while the
heterogeneous table tabulates XSs by solving heterogeneous

slowing-down equations with varying pin cell properties (typically
1D cylindrical geometry). The homogeneous table is preferred for
its simplicity. There are also several scattering models in the sub-
group fixed-source equation. The scattering model based on the
intermediate resonance (IR) approximation is adopted (Ishiguro
and Takano, 1969).

In the resonance energy range (4:0 eV � 9118:0 eV in this
paper), the neutron slowing-down is dominated by the elastic scat-
tering and the CE neutron slowing-down equation can be written
as:

X � rwðr;X;uÞ þRtðr;uÞwðr;X;uÞ ¼ 1
4p

Z 1

0
Rsðr;u0 ! uÞ/ðr;u0Þdu0

ð1Þ
whereX is the angular variable; r is the coordinate in space; u is the
lethargy; wðr;X;uÞ is the angular flux; /ðr;uÞ is the scalar flux;
Rtðr;uÞ is the total XS; Rsðr;u0 ! uÞ is the scattering kernel.

Based on the IR approximation, the neutron slowing-down
equation can be simplified to:

X � rwðr;X;uÞ þ Rtðr;uÞwðr;X;uÞ

¼ 1
4p

X
k

kkðuÞRp;kðrÞ þ 1� kkðuÞ½ �Rs;kðr;uÞ/ðr;uÞ
� � ð2Þ

where k is the nuclide index; kkðuÞ is the Goldstein-Cohen (GC) fac-
tor (MacFarlane, 1999); Rp;kðrÞ is the potential elastic scattering XS;
Rs;kðr;uÞ is the scattering XS;

As the treatment of the resonance interference effect is outside
the scope of this paper, the following derivation is based on the
assumption that there is only one resonant nuclide in the problem
to be solved.

For an homogeneous system consisting of a resonant nuclide
and the corresponding background nuclide of 1H (the scattering
XS is assumed to be 20 barns, the absorption XS is 0 barn and
atomic weight ratio is identical to that of 1H), the solution of Eq.
(2) is:

/ðuÞ ¼ rbðuÞ
rinter;resðuÞ þ rbðuÞ ð3Þ

where rbðuÞ ¼ r0 þ kresðuÞrp;res is the background XS; r0 ¼
Nbackrp;back=Nres is the dilution XS; rinter;resðuÞ ¼ ra;resðuÞþ
kresðuÞ rs;resðuÞ � rp;res

� �
is the intermediate XS.

The definition of the MG XS is:

rx;res;gðrÞ ¼
R
Dug

rx;resðuÞ/ðr;uÞduR
Dug

/ðr;uÞdu ð4Þ

where g is the energy group index; Dug is the lethargy range of
energy group g.

For an homogeneous system, Eq. (3) is replaced in Eq. (4) to
yield the following subgroup form:

rx;res;gðrb;gÞ ¼
P

i

R
Dug;i

rx;resðuÞ/ðuÞduP
i

R
Dug;i

/ðuÞdu

¼
P

irx;res;g;i/g;iP
i/g;i

¼
P

irx;res;g;i
pres;g;irb;g

rinter;res;g;iþrb;gP
i

pres;g;irb;g
rinter;res;g;iþrb;g

ð5Þ

where i is the subgroup index; x is the reaction type; rx;res;gðrb;gÞ is
the MG XS as a function of background XS; Dug;i is the lethargy
range of subgroup; rx;res;g;i is the subgroup level; /g;i is the subgroup
flux; pres;g;i is the subgroup probability. The resonance XS table
consists of MG XS over a range of background XSs. In this paper,
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