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a b s t r a c t

Neutron noise equations, which are obtained by assuming small perturbations of macroscopic cross sec-
tions around a steady-state neutron field and by subsequently taking the Fourier transform in the fre-
quency domain, have been usually solved by analytical techniques or by resorting to diffusion theory.
A stochastic approach has been recently proposed in the literature by using particles with complex-
valued weights and by applying a weight cancellation technique. We develop a new Monte Carlo algo-
rithm that solves the transport neutron noise equations in the frequency domain. The stochastic method
presented here relies on a modified collision operator and does not need any weight cancellation tech-
nique. In this paper, both Monte Carlo methods are compared with deterministic methods (diffusion in
a slab geometry and transport in a simplified rod model) for several noise frequencies and for isotropic
and anisotropic noise sources. Our stochastic method shows better performances in the frequency region
of interest and is easier to implement because it relies upon the conventional algorithm for fixed-source
problems.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Traditional neutron noise analysis addresses the description of
time-dependent flux fluctuations induced by small global or local
perturbations of the macroscopic cross sections, which may occur
in nuclear reactors due to stochastic density fluctuations of the
coolant, to vibrations of fuel elements, control rods, or any other
structures in the core (Pázsit and Demazière, 2010). Neutron noise
techniques are adopted in the nuclear industry for non-invasive
general monitoring, control and detection of anomalies in nuclear
power plants (Fry et al., 1986). They are also applied to the mea-
surement of the properties of the coolant, such as speed and void
fraction (Kosály, 1980). In power reactors, ex-core and in-core
detectors can be used to monitor neutron noise with the aim of
detecting possible anomalies and taking the necessary measures
for continuous safe power production.

The general noise equations are obtained by assuming small
perturbations around a steady-state neutron flux and by subse-
quently taking the Fourier transform in the frequency domain.
The analysis is performed based on the neutron kinetic equations,
including the coupling with neutron precursors. The outcome of

the Fourier transform analysis is a fixed-source equation with com-
plex operators for the perturbed neutron field, which can then be
solved so as to predict noise measurements at detector locations.
For each frequency, the neutron flux is a complex function having
an amplitude and a phase.

Until recently, neutron noise equations have been only solved
by analytical techniques (Pázsit and Analytis, 1980; Jonsson
et al., 2012) and by resorting to diffusion theory (Demazière,
2011; Malmir et al., 2010). It is therefore necessary to validate
these approaches via Monte Carlo simulation. In 2013, a Monte
Carlo algorithm was first proposed in order to solve the transport
equation in neutron noise theory (Yamamoto, 2013). Such algo-
rithm is a cross-over between fixed-source and power iteration
methods and adopts a weight cancellation technique developed
by the same author for neutron leakage-corrected calculations or
higher order mode eigenvalue calculations (Yamamoto, 2009,
2012a, 2012b). This method yields satisfactory results but has
some shortcomings, such as the need of introducing a ‘‘binning
procedure” for the weight cancellation: each fissile region must
be divided into a large number of small regions where positive
and negative weights are summed up and cancelled.

In this work, we present a new Monte Carlo method that does
not need any weight cancellation technique. This method is
inspired by a recent technique developed in Zoia et al. (2014,
2015) for alpha eigenvalue calculations and introduced for reactor
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noise calculations (in concise form) in Rouchon et al. (2016). This
paper is organized as follows. In Section 2, the general neutron
noise theory will be briefly introduced and the new Monte Carlo
method will be presented. Some extensions of the work discussed
in Rouchon et al. (2016) will be presented. In Section 3, we will
compare our Monte Carlo method and the method proposed in
Yamamoto (2013) in the simplified rod model to deterministic
methods (slab diffusion and rod transport) for isotropic and aniso-
tropic noise sources, and for frequencies in the range [0.01 Hz,
100 Hz] (which is of interest for applications in reactor physics
(Kosály, 1980)) where the conventional algorithm for fixed-
source problems can be used for both Monte Carlo methods. In Sec-
tion 4, we will compare both Monte Carlo methods at low and very
high frequencies, and we will analyse the impact of the implicit
capture on the algorithms and the convergence rate of the neutron
noise equation. Conclusions will be presented in Section 5.

2. Monte Carlo methods for neutron noise theory

2.1. Neutron noise equations

Here we summarize the theory of neutron noise. The reformu-
lation of these equations for diffusion theory is straightforward.
Note that the zero power reactor noise (fluctuations inherent to
the branching process) is neglected in power reactor noise theory
(Pázsit and Demazière, 2010).

We assume small perturbations of the macroscopic cross sec-
tions around the following critical steady state:

L0ðr;X; EÞW0ðr;X; EÞ ¼ 0; ð1Þ
where W0 is the steady-state angular flux and
L0 ¼ X:rþ R0 � H0 � P0 the steady-state Boltzmann operator with
R0 the steady-state total cross section, H0 the steady-state scatter-
ing operator and P0 the steady-state production operator. For the
steady state, the effective multiplication factor is assumed to be
k ¼ 1. For a systemwith one precursor group and one fissile isotope,
the critical steady-state Boltzmann equation is:

X:rþ R0ðr; EÞð ÞW0ðr;X; EÞ
¼
ZZ

R0;sðr;X0:X; E0 ! EÞW0ðr;X0; E0ÞdE0dX0

þ 1
k
vðEÞ
4p

ZZ
mðE0ÞR0;f ðr; E0ÞW0ðr;X0; E0ÞdE0dX0: ð2Þ

We impose a temporal perturbation of the cross sections, which
yields the kinetic equation:

1
v
@t þ Lðr;X; E; tÞ

� �
Wðr;X; E; tÞ ¼ 0; ð3Þ

where W is the angular flux, v the neutron velocity and
L ¼ X:rþ R� H � P the kinetic Boltzmann operator with R the
total cross section, H the scattering operator and P the production
operator containing prompt and delayed neutron contributions.
We impose a periodic perturbation of the kinetic operator with a
period T0, in the form:

Lðr;X; E; tÞ ¼ L0ðr;X; EÞ þ dLðr;X; E; tÞ: ð4Þ
This perturbation is supposed to start at time t ¼ �1, so that

we can reasonably assume that the asymptotic perturbation
regime is attained. A similar decomposition is also used for the
angular flux:

Wðr;X; E; tÞ ¼ W0ðr;X; EÞ þ dWðr;X; E; tÞ; ð5Þ
where the perturbation term dW is called ‘‘neutron noise”. Finally,
plugging expressions (4) and (5) into Eq. (3) leads to a kinetic source
equation for the neutron noise:

1
v
@t þ Lðr;X; E; tÞ

� �
dWðr;X; E; tÞ ¼ �dLðr;X; E; tÞW0ðr;X; EÞ: ð6Þ

The second order term dLdWwill be neglected, so that we obtain
the traditional linearized kinetic equation:

1
v
@t þ L0ðr;X; EÞ

� �
dWðr;X; E; tÞ ¼ �dLðr;X; E; tÞW0ðr;X; EÞ: ð7Þ

We want to determine the unique periodic solution of this
equation. We apply the Fourier transform and we obtain the noise
equation in the usual form:

L0;xðr;X; EÞdWðr;X; E;xÞ ¼ �dLðr;X; E;xÞW0ðr;X; EÞ; ð8Þ
where L0;x ¼ ixv þX:rþ R0 � H0 � P0;x is a modified (complex)
Boltzmann operator, i the imaginary unit and x ¼ 2pf the angular
frequency. The right hand side of Eq. (8) represents a (known)
‘‘noise source”. The terms H0 and P0;x are defined by:

H0dWðr;X; E;xÞ
¼
ZZ

R0;sðr;X0:X; E0 ! EÞdWðr;X0; E0;xÞdE0dX0;

P0;xdWðr;X; E;xÞ

¼ 1
k
vpðEÞ
4p

ZZ
mpðE0ÞR0;f ðr; E0ÞdWðr;X0; E0;xÞdE0dX0

þ 1
k
vdðEÞ
4p

ZZ
md;xðE0ÞR0;f ðr; E0ÞdWðr;X0; E0;xÞdE0dX0: ð9Þ

For a system with one precursor group and one fissile isotope,
the noise equation therefore reads:�
X:rþ R0ðr; EÞ þ i

x
v

�
dWðr;X; E;xÞ

¼
ZZ

R0;sðr;X0:X; E0 ! EÞdWðr;X0; E0;xÞdE0dX0

þ 1
k
vpðEÞ
4p

ZZ
mpðE0ÞR0;f ðr; E0ÞdWðr;X0; E0;xÞdE0dX0

þ 1
k
vdðEÞ
4p

ZZ
md;xðE0ÞR0;f ðr; E0ÞdWðr;X0; E0;xÞdE0dX0

þ Sðr;X; E;xÞ; ð10Þ

where md;xðEÞ ¼ k2

k2þx2 � i kx
k2þx2

� �
mdðEÞ. All other notations are stan-

dard. The noise source S is defined by:

Sðr;X; E;xÞ ¼ �dRðr; E;xÞW0ðr;X; EÞ
þ
ZZ

dRsðr;X0:X; E0 ! E;xÞW0ðr;X0; E0ÞdE0dX0

þ 1
k
vpðEÞ
4p

ZZ
mpðE0ÞdRf ðr; E0;xÞW0ðr;X0; E0ÞdE0dX0

þ 1
k
vdðEÞ
4p

ZZ
md;xðE0ÞdRf ðr; E0;xÞW0ðr;X0; E0ÞdE0dX0; ð11Þ

where dRxðr; E;xÞ is the Fourier transform of the perturbed term of
the macroscopic cross section Rxðr; E; tÞ ¼ R0;xðr; EÞ þ dRxðr; E; tÞ.
Observe that in Yamamoto (2013), it is assumed that the total cross
section is the only time-dependent cross section.

Thus, because of the delayed neutrons, the production operator
P0;x depends on the frequency. Eq. (10) can be conceptually split
into a system of two equations for the real and imaginary part of
dW. The two equations are formally coupled by two terms: i xv
and the modified production operator P0;x.

2.2. A new Monte Carlo method for the noise equations

A stochastic method has been first provided in Yamamoto
(2013) to solve the fixed-source problem described by Eq. (10).
This method is based on the simulation of particles carrying com-
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