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ABSTRACT

This work considers the minimization of a general convex
function f(X) over the cone of positive semi-definite ma-
trices whose optimal solution X™* is of low-rank. Standard
first-order convex solvers require performing an eigenvalue
decomposition in each iteration, severely limiting their scal-
ability. A natural nonconvex reformulation of the problem
factors the variable X into the product of a rectangular matrix
with fewer columns and its transpose. For a special class of
matrix sensing and completion problems with quadratic ob-
jective functions, local search algorithms applied to the fac-
tored problem have been shown to be much more efficient
and, in spite of being nonconvex, to converge to the glob-
al optimum. The purpose of this work is to extend this line
of study to general convex objective functions f(X) and in-
vestigate the geometry of the resulting factored formulations.
Specifically, we prove that when f(X) satisfies the restricted
well-conditioned assumption, each critical point of the fac-
tored problem either corresponds to the optimal solution X*
or a strict saddle where the Hessian matrix has a strictly nega-
tive eigenvalue. Such a geometric structure of the factored
formulation ensures that many local search algorithms can
converge to the global optimum with random initializations.

Index Terms— Burer-Monteiro factorization, low-rank
matrix optimization, nonconvex optimization, strict saddle

property

1. INTRODUCTION

Consider a general semi-definite program (SDP) where a con-
vex objective function f(X) is minimized over the cone of
positive semi-definite (PSD) matrices:

minimize f(X) subject to X = 0. @)
XeRnxn
For this problem, even fast first-order methods, such as the
projected gradient descent algorithm [2], require perform-
ing an expensive eigenvalue decomposition in each iteration.
These expensive operations form the major computational
bottleneck of the algorithms and prevent them from scaling
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to scenarios with millions of variables, a typical situation
in a diverse of applications, including quantum state to-
mography [3], user preferences prediction [4], and pairwise
distances estimation in sensor localization [5].

When the SDP (1) admits a low-rank solution X *, in their
pioneer work [6], Burer and Monteiro proposed to factorize
the variable X = UUT, where U € R™*" with r < n, and
solved a factored nonconvex problem

ng}igglxige g(U), where g(U) := f(UUT). )
There, they dealt with standard SDPs with a linear objec-
tive function and several linear constraints, and argued that
when the factorization X = UU7 is overparameterized, i.e.,
r > r* := rank(X*), any local minimum of (2) corresponds
to the solution X ™, provided some regularity conditions are
satisfied. Unfortunately, these regularity conditions are gen-
erally hard to verify for specific SDPs arising in applications.
Our work differs in that the convex objective function f(X)
is generally not linear and there are no additional linear con-
straints.

The past few years have seen renewed interest in the
Burer-Monteiro factorization for solving low-rank matrix
recovery inverse problems. With technical innovations in
analyzing the nonconvex landscape of the factored objective
function, several recent works have shown that with exact
parameterization (i.e., 7 = r*) the factored objective function
¢(U) in has no spurious local minima or degenerate saddle
points [7—12]. An important implication is that local search
algorithms, such as gradient descent and its variants, are
able to converge to the global optimum with even random
initialization [13].

We generalize this line of work by assuming a general
objective function f(X) in the optimization (1). Viewing
the factored problem (2) as a way to solve the convex opti-
mization (1) to the global optimum, frees us from rederiv-
ing the statistical performances of the factored optimization
(2). Instead, its performance inherits from that of the con-
vex optimization (1), whose performance can be developed
using a suite of powerful convex analysis techniques accumu-
lated from several decades of research. As a specific example,
the optimal sampling complexity [14] and minimax denoising
rate [15] need not to be rederived once one knows the equiv-
alence between the convex and the factored formulations.
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2. MAIN THEOREM

Before presenting our main result, we provide several neces-
sary definitions. We call a vector x a critical point of some
differentiable function f(-) if the gradient V f () = 0. When
f(-) is twice continuously differentiable, a critical point x is
called a strict saddle or riddable saddle [16] if the Hessian
has a strictly negative eigenvalue, i.e., Amin (V2 f()) < 0. A
twice continuously differentiable function satisfies the strict
saddle property if every critical point is either a local mini-
mum or is a strict saddle [7].

Heuristically, the strict saddle property describes a geo-
metric structure of the landscape: if a critical point is not a
local minimum, then it is a strict saddle, which implies the
Hessian matrix at this point has a strictly negative eigenvalue.
Hence, we can continue to decrease the function value at this
point along the negative-curvature direction.

Theorem 1 (Local convergence [13,17,18]). The strict sad-
dle property allows many local search algorithms to escape
all the saddle points and converge to a local minimum.

Our governing assumption on the objective function f(X)
is the (2r, 4r)-restricted well-conditioned assumption:

m < [V2f(X)](D,D)/||D||% < M with % <15 )

for any D of rank(D) < 4r and any PSD matrix X with
rank(X) < 2r. Here, [V2f(X)](D, D) is the directional
curvature along D, defined as Zim’k %DUDW This
restricted well-conditioned assumption (3) is standard in ma-
trix inverse problem [19,20]. We show that if the original ob-
jective function f(X) is (2r, 4r)-restricted well conditioned,
then each critical point of the factored objective function g(U)
either corresponds to the low-rank global solution of the o-
riginal convex program or is a strict saddle where the Hes-
sian V2g(U) has a strictly negative eigenvalue. This implies
the factored objective function g(U) satisfies the strict saddle
property.

Theorem 2 (Global landscape). Suppose the function f(X)
in (1) is twice continuously differentiable and restricted well-
conditioned (3). Assume X* is an optimal solution of the
minimization (1) with rank(X*) = r*. Set r > r* in (2). Let
U be any critical point of g(U) satisfying Vg(U) = 0. Then
U either corresponds to a square-root factor of X*, i.e.,

X*=UU"; 4)

or is a strict saddle of the factored problem (2):

—0.24mr when r > r*
Amin(V29(U)) < 4 —0.19mp(X*)  whenr =1* (5
—0.24mp(X*)  whenU =0

with T := min{p(U)?, p(X*)} and p(W) denoting the small-
est nonzero singular value.

Remarks. First, the matrix D is the direction from the sad-
dle point U to its closest globally optimal factor U*R of
the same size as U. Second, our result covers both over-
parameterization where » > r* and exact parameterization
where » = r*. Third, this strict saddle property ensures
that many iterative algorithms, for example, stochastic gra-
dient descent [17], trust-region method [18], and gradient
descent with sufficiently small stepsize [ 3], all converge to a
square-root factor of X*, even with random initialization.

3. APPLICATIONS

Our main result only relies on the restricted well-conditioned
property. Therefore, in addition to the traditional low-rank
matrix recovery problems with a quadratic loss function, it
is also applicable to a lot of other low-rank matrix optimiza-
tion problems with possibly non-quadratic loss functions. We
compiled the following list of applications that are covered by
our theory.

Weighted PCA Problem. Formally, in the weighted-PCA
problem, given a pointwisely-weighted observation of a PSD
matrix X, i.e., Y = W® X where ® is the Hadamard product
or its perturbed version with W being the sensing matrix, one
aims to recover the principle component U by minimizing the
nonconvex objective function g(U) = ||[Y — W © (UUT)]|2..
The weighted-PCA problem has no known analytic solution
and it is shown to be NP-hard [21]. Fortunately, by defining
f(X) = ||[Y — W ® X||%, we can compute its directional
curvature as [V2f(X)](D, D) = |W ® D||%. Hence, as long

2
max Wij <15
min ij —

it is guaranteed to recover U through local search algorithms.

as the weights have a smaller dynamic range:

Symmetric Robust PCA. In the symmetric variant of ro-
bust PCA, the observed matrix Y = X + S with S being
sparse and X being PSD. Traditionally, we recover X by
minimizing |[Y" — X[|1 = >_,,[Yi; — Sy;| subject to a PSD
constraint. However, this formulation doesn’t fit into our
framework naively due to the non-smoothness of the 1 norm.
An interesting bypass would be solving X by minimizing
Eij he(Yi; — Si;) where h,(.) is chosen to be a convex
smooth approximation to the absolute value function. A pos-
sible choice is h,(z) = alog((exp(z/a) + exp(—z/a))/2),
which is shown to be strictly convex and smooth in [22, Lem-
ma A.1].

1-Bit Matrix Recovery. Given quantized measurements:
y; = bit(A; ¢ X*) where e denotes the inner produc-
t and bit(x) outputs 0 or 1 in a probabilistic manner, we
attempt to recover X* € R™ ™ by minimizing f(X) =
—2_;(y;log(o(AjeX))+(1-y;)log(1—-0(A;eX))), where

el ]. More-

o(x) = 5= is the logistic regression function [
over, the Hessian quadratic form of f(X)is [V2f(X)](D, D)
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