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A B S T R A C T

As the world leader in CO2 emissions, China is a key focus for climate change mitigation. In this paper, we
conducted a cross-province comparison of CO2 emission trends in China from 2006 to 2012. We determined
effects of CO2 emission factor (EMF), energy mix change (EMX), potential energy intensity change (PEI),
industrial structure (STR), economic activity (EAT), technological change (BPC) and energy efficiency change
(EC) as underlying forces of CO2 emission changes with production-based decomposition. Compared to other
production-theory decomposition analyses (PDA), the method used in this paper can overcome the weakness of
PDA on the measurement of structural changes and energy mix effect. The results provided strong evidence that
EAT is the main driver behind rising emissions, while changes in PEI, EMX and EC have led to CO2 emission
reductions in most provinces/municipalities in China. In particular, we introduced the global benchmark
technology to establish the relationship between CO2 emissions and energy use technology. The potential CO2

reductions in China were further measured under the scenarios of contemporaneous technology and global
technology. The principal empirical implication is that the promotion of energy conservation technology and
reductions in inter-regional technological disparity would be effective in reducing CO2 emissions in technically
inefficient regions.

1. Introduction

As the world leader in CO2 emissions from fossil fuel combustion,
China has attracted worldwide attention with its accelerating CO2

emissions over the past three decades. Considering its critical role in
global CO2 emissions, China becomes a key focus for effects in emission
mitigations. In this context, a lot of efforts have been made to identify
and quantify the underlying driving forces that affect CO2 emission
changes in China. In literature, factors that influence changes of
China's CO2 emissions have been widely discussed in previous studies
[1–5]. However, CO2 emission trends among different provinces in
China have been less systematically investigated [6].

It should be noted that significant diversity exists among eastern,
central and western areas in China [7]. For example, indicators such as
per capita GDP, carbon emission intensity and energy efficiency differ
greatly across regions in China [8], and the differences are most
prominent between the developed regions in eastern area and the less
developed regions in western area of China. In order to control

greenhouse gas emissions, the Chinese government established a set
of carbon emission reduction targets for different regions in the 11th
and 12th Five-Year Plans (FYP) for national economic and social
development. However, how to reasonably allocate regional CO2

reduction targets based on the actual situations and reduction potential
of various regions is still worthy of discussion [9]. Therefore, under-
standing the key drivers behind China's growing CO2 emissions and
developing regional emission reduction policies in China have theore-
tical and practical values for decision makers.

CO2 emissions in China have attracted increasing attentions in light
of China's decisive role in the global carbon emission mitigation.
Technically, CO2 emission changes can be analyzed by attributing the
changes in CO2 emissions into several pre-defined factors by adopting
decomposition analysis [10]. In literature, the structural decomposi-
tion analysis (SDA) and the index decomposition analysis (IDA) are the
most commonly used decomposition techniques [11–20].1 In terms of
data and methodologies, the SDA uses the input–output framework
and data, while the IDA uses only sector level data to decompose
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changes in indicators. Therefore, compared to SDA, the method of IDA
is more flexible, easy to use, and has relatively lower data requirements
for empirical models. As a result, IDA has been widely used to
decompose CO2 emissions in different countries and various time
periods [21–25]. Under the framework of IDA, factors such as the
carbon intensity of energy use, energy intensity, structural change and
economic activity were identified as the major factors affecting CO2

emissions, and the decline in energy intensity was identified as the
driving force for the considerable decrease in China's CO2 emissions
[26–28]. However, IDA could not provide a quantitative analysis for
the impacts of technological change effect, substitutions between
energy and other inputs (i.e., capital and labor), and the effect of
technical efficiency change on sectoral intensity change, because it
simply regards the energy/emission intensity change as the effect of
production technology [29,30]. Therefore, the method of IDA is
difficult to provide reasonable explanations on the mechanism of
sectoral energy/emission intensity changes based on economic the-
ories [31,32].

More recently, in order to analyze the impact of production
technology, decomposition analysis was improved and conducted
within the production theory framework. [33] proposed production-
theoretical decomposition analysis (PDA) based on Shephard output
distance functions, which can be computed using data envelopment
analysis (DEA) techniques. Empirical analyses of CO2 emission
changes based on the method of PDA include [34–38], etc. The
proposed methodologies can assess the effects of “technological
change” and “technical efficiency change”. The former measures the
effect of best practice technology, and the latter measures the effect of
changes in production efficiency. PDA provides detailed information
about the influence of production technologies, which could be used to
evaluate the degree of “energy efficiency paradox” [36]. However, its
measurement on energy mix effect and the industrial structure effect,
which are regarded as important factors of emission change, is possibly
inconsistent with reality. For example, when industrial structure
transforms from energy intensive industries to less energy intensive
industries, it is expected that the industrial structure change would
reduce an economy's overall energy intensity. However, results from
PDA indicates that such an industrial structure transformation has a
negative effect on energy intensity reduction [39]. PDA has a similar
problem for the measurement of energy mix effect. When energy
consumption structure has been improved, it is expected that such
improvement would promote energy intensity reduction or at least
would not has a negative impact on energy intensity reduction.
However, results from PDA demonstrate the inconsistency.

The main reason for the above problems of PDA is that the
structural components in output distance function are symmetrical.
In other words, different properties of industries and energies cannot
be reflected in the PDA model. Specifically, the lower energy consump-
tion feature of the tertiary industry sector compared to the second
industry sector is not reflected in the distance function. Therefore, the
PDA model cannot provide information on the real effect of industrial
structure transformation. In the PDA model, the output proportions of
three sectors (primary, secondary, and tertiary) are all included in the
output distance functions. The industrial structure was assumed to
change as follows: the share of primary industry remained constant,
the share of secondary industry declined, while the share of tertiary
increased correspondingly. On one hand, the declined proportion of
secondary industry in output would make the value of output distance
function smaller; on the other hand, the increased proportion of
tertiary industry in output would make the value of output distance
function bigger. If the effect of the latter were bigger than the former,
the industrial structure transformation would have a negative impact
on energy intensity reduction, which is contrary to fact.

Based on the above analysis, we combined the advantages of IDA
and PDA to examine the influencing factors of China's CO2 emission
changes and compare CO2 emissions among provinces in China.

Specifically, we establish the decomposition model based on the
Shephard energy distance function to disaggregate the provincial level
changes of CO2 emissions in China during 2006–2012, and then
introduce the global benchmark technology to establish the relation-
ship between CO2 emissions and energy use technologies. The central
idea of the combination is introducing Shephard energy distance
functions which captures the impacts from production technology in
the expression of the aggregate CO2 emissions, and then conducting
IDA (e.g., LMDI) for this equation to identify the influencing factors
driving change in the aggregate CO2 emissions. In this sense, PDA and
IDA are embodied together to provide the mechanism of CO2 emission
change. The contributions of this paper lie in the following
aspects: First, the decomposition method used in this paper can
overcome the weakness of PDA on the measurement of structural
changes, and thus can produce more reasonable results; Second, the
proposed approach has been applied in the field of investigating CO2

emission trends among provinces in China; Third, from the methodo-
logical perspective, this paper specifies a different production technol-
ogy setting which could be extended to other application areas.

The remainder of this article is organized as follows: Section 2
describes methodology and data; Section 3 presents and discusses the
empirical results; Section 4 is conclusions and implications.

2. Methodology and data

2.1. The decomposition model

The CO2 emissions of country n N= 1, ... , can be expressed as:
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functions defined on the contemporaneous benchmark technology and
the global benchmark technology, respectively. Specifically, the con-
temporaneous production technology for the industrial sub-sector
i I= 1, ... , at time period t T= 1, ... , can be expressed as:
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The global benchmark technology for the industrial sub-sector i is
defined as ([40] and [41]):

T T T T= { ∪ ∪ ... ∪ }i i i i T
g

,1
c

,2
c

,
c

(3)

According to [42], the Shepard energy distance function relative to
the contemporaneous benchmark technology and the global bench-
mark technology can be described as Eq. (4) and Eq. (5), respectively.
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Using DEA-type linear programming technique, the Shepard energy
distance function can be estimated through the following optimization
problems.
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